Title: | Adaptive Gauss Hermite Quadrature for Bayesian Inference |
---|---|
Description: | Adaptive Gauss Hermite Quadrature for Bayesian inference. The AGHQ method for normalizing posterior distributions and making Bayesian inferences based on them. Functions are provided for doing quadrature and marginal Laplace approximations, and summary methods are provided for making inferences based on the results. See Stringer (2021). "Implementing Adaptive Quadrature for Bayesian Inference: the aghq Package" <arXiv:2101.04468>. |
Authors: | Alex Stringer |
Maintainer: | Alex Stringer <[email protected]> |
License: | GPL (>= 3) |
Version: | 0.4.3 |
Built: | 2025-01-13 08:43:28 UTC |
Source: | https://github.com/awstringer1/aghq |
Normalize the log-posterior distribution using Adaptive Gauss-Hermite Quadrature. This function takes in a function and its gradient and Hessian, and returns a list of information about the normalized posterior, with methods for summarizing and plotting.
aghq( ff, k, startingvalue, transformation = default_transformation(), optresults = NULL, basegrid = NULL, control = default_control(), ... )
aghq( ff, k, startingvalue, transformation = default_transformation(), optresults = NULL, basegrid = NULL, control = default_control(), ... )
ff |
A list with three elements:
The user may wish to use |
k |
Integer, the number of quadrature points to use. I suggest at least 3. k = 1 corresponds to a Laplace approximation. |
startingvalue |
Value to start the optimization. |
transformation |
Optional. Do the quadrature for parameter |
optresults |
Optional. A list of the results of the optimization of the log
posterior, formatted according to the output of |
basegrid |
Optional. Provide an object of class |
control |
A list with elements
|
... |
Additional arguments to be passed to |
When k = 1
the AGHQ method is a Laplace approximation, and you should use
the aghq::laplace_approximation
function, since some of the methods for
aghq
objects won't work with only one quadrature point. Objects of
class laplace
have different methods suited to this case. See ?aghq::laplace_approximation
.
An object of class aghq
which is a list containing elements:
normalized_posterior: The output of the normalize_logpost
function, which
itself is a list with elements:
nodesandweights
: a dataframe containing the nodes and weights for the adaptive quadrature rule, with the un-normalized and normalized log posterior evaluated at the nodes.
thegrid
: a NIGrid
object from the mvQuad
package, see ?mvQuad::createNIGrid
.
lognormconst
: the actual result of the quadrature: the log of the normalizing constant of the posterior.
marginals: a list of the same length as startingvalue
of which element j
is the result of calling aghq::marginal_posterior
with that j
. This is
a tbl_df/tbl/data.frame containing the normalized log marginal posterior
for theta_j evaluated at the original quadrature points. Has columns
"thetaj","logpost_normalized","weights"
, where j
is the j
you specified.
optresults: information and results from the optimization of the log posterior, the
result of calling aghq::optimize_theta
. This a list with elements:
ff
: the function list that was provided
mode
: the mode of the log posterior
hessian
: the hessian of the log posterior at the mode
convergence
: specific to the optimizer used, a message indicating whether it converged
control: the control parameters passed
Other quadrature:
get_hessian()
,
get_log_normconst()
,
get_mode()
,
get_nodesandweights()
,
get_numquadpoints()
,
get_opt_results()
,
get_param_dim()
,
laplace_approximation()
,
marginal_laplace_tmb()
,
marginal_laplace()
,
nested_quadrature()
,
normalize_logpost()
,
optimize_theta()
,
plot.aghq()
,
print.aghqsummary()
,
print.aghq()
,
print.laplacesummary()
,
print.laplace()
,
print.marginallaplacesummary()
,
summary.aghq()
,
summary.laplace()
,
summary.marginallaplace()
logfteta2d <- function(eta,y) { # eta is now (eta1,eta2) # y is now (y1,y2) n <- length(y) n1 <- ceiling(n/2) n2 <- floor(n/2) y1 <- y[1:n1] y2 <- y[(n1+1):(n1+n2)] eta1 <- eta[1] eta2 <- eta[2] sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 + sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2 } set.seed(84343124) n1 <- 5 n2 <- 5 n <- n1+n2 y1 <- rpois(n1,5) y2 <- rpois(n2,5) objfunc2d <- function(x) logfteta2d(x,c(y1,y2)) funlist2d <- list( fn = objfunc2d, gr = function(x) numDeriv::grad(objfunc2d,x), he = function(x) numDeriv::hessian(objfunc2d,x) ) thequadrature <- aghq(funlist2d,3,c(0,0))
logfteta2d <- function(eta,y) { # eta is now (eta1,eta2) # y is now (y1,y2) n <- length(y) n1 <- ceiling(n/2) n2 <- floor(n/2) y1 <- y[1:n1] y2 <- y[(n1+1):(n1+n2)] eta1 <- eta[1] eta2 <- eta[2] sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 + sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2 } set.seed(84343124) n1 <- 5 n2 <- 5 n <- n1+n2 y1 <- rpois(n1,5) y2 <- rpois(n2,5) objfunc2d <- function(x) logfteta2d(x,c(y1,y2)) funlist2d <- list( fn = objfunc2d, gr = function(x) numDeriv::grad(objfunc2d,x), he = function(x) numDeriv::hessian(objfunc2d,x) ) thequadrature <- aghq(funlist2d,3,c(0,0))
Compute the moment of any function ff using AGHQ.
compute_moment(obj, ...) ## S3 method for class 'list' compute_moment( obj, ff = function(x) 1, gg = NULL, nn = NULL, type = c("raw", "central"), method = c("auto", "reuse", "correct"), ... ) ## S3 method for class 'aghq' compute_moment( obj, ff = function(x) 1, gg = NULL, nn = NULL, type = c("raw", "central"), method = c("auto", "reuse", "correct"), ... ) ## Default S3 method: compute_moment( obj, ff = function(x) 1, gg = NULL, method = c("auto", "reuse", "correct"), ... )
compute_moment(obj, ...) ## S3 method for class 'list' compute_moment( obj, ff = function(x) 1, gg = NULL, nn = NULL, type = c("raw", "central"), method = c("auto", "reuse", "correct"), ... ) ## S3 method for class 'aghq' compute_moment( obj, ff = function(x) 1, gg = NULL, nn = NULL, type = c("raw", "central"), method = c("auto", "reuse", "correct"), ... ) ## Default S3 method: compute_moment( obj, ff = function(x) 1, gg = NULL, method = c("auto", "reuse", "correct"), ... )
obj |
Object of class |
... |
Used to pass additional argument |
ff |
Any R function which takes in a numeric vector and returns a numeric vector. Exactly one of |
gg |
The output of, or an object which may be input to |
nn |
A numeric scalar. Compute the approximate moment of this order, |
type |
Either |
method |
Method for computing the quadrature points used to approximate moment. One of |
If multiple of nn
, gg
, and ff
are provided, then compute_moment
will use nn
, gg
, or ff
, in that order, without warning.
There are several approximations available. The "best" one is obtained by specifying gg
and using method = 'correct'
. This recomputes the mode and curvature for the
function g(theta)posterior(theta)
, and takes the ratio of the AGHQ approximation
to this function to the AGHQ approximation to the marginal likelihood. This obtains the
same relative rate of convergence as the AGHQ approximation to the marginal likelihood. It
may take a little extra time, and only works for positive, scalar-valued functions g
.
method = 'reuse'
re-uses the AGHQ adapted points and weights. It's faster than the
correct method, because it does not involve any new optimization, it's just a weighted sum.
No convergence theory. Seems to work ok in "practice". "Works" for arbitrary g
.
Specifying ff
instead of gg
automatically uses method = 'reuse'
. This
interface is provided for backwards compatibility mostly. However, one advantage is that
it allows for vector-valued functions, in which case it just returns the corresponding
vector of approximate moments. Also, it only requires the adapted nodes and weights, not
the ability to evaluate the log-posterior and its derivatives, although this is unlikely
to be a practical concern.
Specifying a numeric value nn
will return the moment E(theta^nn|Y)
.
This automatically does some internal shifting to get the evaluations away from zero,
to avoid the inherent problem of multi-modal "posteriors" that occurs when the posterior
mode is near zero, and account for the fact that some of the new adapted quadrature points
may be negative. So, the actual return value is E(theta^nn + a|Y) - a
for a cleverly-chosen
value a
.
Finally, type='raw'
computes raw moments E(g(theta)|Y)
, where type='central'
computes central moments, E(g(theta - E(g(theta)|Y))|Y)
. See examples.
A numeric vector containing the moment(s) of ff with respect to the joint distribution being approximated using AGHQ.
logfteta2d <- function(eta,y) { # eta is now (eta1,eta2) # y is now (y1,y2) n <- length(y) n1 <- ceiling(n/2) n2 <- floor(n/2) y1 <- y[1:n1] y2 <- y[(n1+1):(n1+n2)] eta1 <- eta[1] eta2 <- eta[2] sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 + sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2 } set.seed(84343124) n1 <- 5 n2 <- 5 n <- n1+n2 y1 <- rpois(n1,5) y2 <- rpois(n2,5) objfunc2d <- function(x) logfteta2d(x,c(y1,y2)) funlist2d <- list( fn = objfunc2d, gr = function(x) numDeriv::grad(objfunc2d,x), he = function(x) numDeriv::hessian(objfunc2d,x) ) quad <- aghq(funlist2d,7,c(0,0))
logfteta2d <- function(eta,y) { # eta is now (eta1,eta2) # y is now (y1,y2) n <- length(y) n1 <- ceiling(n/2) n2 <- floor(n/2) y1 <- y[1:n1] y2 <- y[(n1+1):(n1+n2)] eta1 <- eta[1] eta2 <- eta[2] sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 + sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2 } set.seed(84343124) n1 <- 5 n2 <- 5 n <- n1+n2 y1 <- rpois(n1,5) y2 <- rpois(n2,5) objfunc2d <- function(x) logfteta2d(x,c(y1,y2)) funlist2d <- list( fn = objfunc2d, gr = function(x) numDeriv::grad(objfunc2d,x), he = function(x) numDeriv::hessian(objfunc2d,x) ) quad <- aghq(funlist2d,7,c(0,0))
Compute the density and cumulative distribution function of the approximate posterior. The density is approximated on a find grid using a polynomial interpolant. The CDF can't be computed exactly (if it could, you wouldn't be using quadrature!), so a fine grid is laid down and the CDF is approximated at each grid point using a simpler integration rule and a polynomial interpolant. This method tends to work well, but won't always.
compute_pdf_and_cdf(obj, ...) ## Default S3 method: compute_pdf_and_cdf( obj, transformation = default_transformation(), finegrid = NULL, interpolation = "auto", ... ) ## S3 method for class 'list' compute_pdf_and_cdf(obj, transformation = default_transformation(), ...) ## S3 method for class 'aghq' compute_pdf_and_cdf(obj, transformation = obj$transformation, ...)
compute_pdf_and_cdf(obj, ...) ## Default S3 method: compute_pdf_and_cdf( obj, transformation = default_transformation(), finegrid = NULL, interpolation = "auto", ... ) ## S3 method for class 'list' compute_pdf_and_cdf(obj, transformation = default_transformation(), ...) ## S3 method for class 'aghq' compute_pdf_and_cdf(obj, transformation = obj$transformation, ...)
obj |
Either the output of |
... |
Used to pass additional arguments. |
transformation |
Optional. Calculate pdf/cdf for a transformation of the parameter
whose posterior was normalized using adaptive quadrature.
|
finegrid |
Optional, a grid of values on which to compute the CDF. The default makes
use of the values in |
interpolation |
Which method to use for interpolating the marginal posterior, |
A tbl_df/tbl/data.frame with columns theta
, pdf
and cdf
corresponding
to the value of the parameter and its estimated PDF and CDF at that value.
Other summaries:
compute_quantiles()
,
interpolate_marginal_posterior()
,
marginal_posterior()
logfteta2d <- function(eta,y) { # eta is now (eta1,eta2) # y is now (y1,y2) n <- length(y) n1 <- ceiling(n/2) n2 <- floor(n/2) y1 <- y[1:n1] y2 <- y[(n1+1):(n1+n2)] eta1 <- eta[1] eta2 <- eta[2] sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 + sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2 } set.seed(84343124) n1 <- 5 n2 <- 5 n <- n1+n2 y1 <- rpois(n1,5) y2 <- rpois(n2,5) objfunc2d <- function(x) logfteta2d(x,c(y1,y2)) funlist2d <- list( fn = objfunc2d, gr = function(x) numDeriv::grad(objfunc2d,x), he = function(x) numDeriv::hessian(objfunc2d,x) ) opt_sparsetrust_2d <- optimize_theta(funlist2d,c(1.5,1.5)) margpost <- marginal_posterior(opt_sparsetrust_2d,3,1) # margpost for theta1 thepdfandcdf <- compute_pdf_and_cdf(margpost) with(thepdfandcdf,{ plot(pdf~theta,type='l') plot(cdf~theta,type='l') })
logfteta2d <- function(eta,y) { # eta is now (eta1,eta2) # y is now (y1,y2) n <- length(y) n1 <- ceiling(n/2) n2 <- floor(n/2) y1 <- y[1:n1] y2 <- y[(n1+1):(n1+n2)] eta1 <- eta[1] eta2 <- eta[2] sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 + sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2 } set.seed(84343124) n1 <- 5 n2 <- 5 n <- n1+n2 y1 <- rpois(n1,5) y2 <- rpois(n2,5) objfunc2d <- function(x) logfteta2d(x,c(y1,y2)) funlist2d <- list( fn = objfunc2d, gr = function(x) numDeriv::grad(objfunc2d,x), he = function(x) numDeriv::hessian(objfunc2d,x) ) opt_sparsetrust_2d <- optimize_theta(funlist2d,c(1.5,1.5)) margpost <- marginal_posterior(opt_sparsetrust_2d,3,1) # margpost for theta1 thepdfandcdf <- compute_pdf_and_cdf(margpost) with(thepdfandcdf,{ plot(pdf~theta,type='l') plot(cdf~theta,type='l') })
Compute marginal quantiles using AGHQ. This function works by first approximating
the CDF using aghq::compute_pdf_and_cdf
and then inverting the approximation numerically.
compute_quantiles( obj, q = c(0.025, 0.975), transformation = default_transformation(), ... ) ## Default S3 method: compute_quantiles( obj, q = c(0.025, 0.975), transformation = default_transformation(), interpolation = "auto", ... ) ## S3 method for class 'list' compute_quantiles( obj, q = c(0.025, 0.975), transformation = default_transformation(), ... ) ## S3 method for class 'aghq' compute_quantiles( obj, q = c(0.025, 0.975), transformation = obj$transformation, ... )
compute_quantiles( obj, q = c(0.025, 0.975), transformation = default_transformation(), ... ) ## Default S3 method: compute_quantiles( obj, q = c(0.025, 0.975), transformation = default_transformation(), interpolation = "auto", ... ) ## S3 method for class 'list' compute_quantiles( obj, q = c(0.025, 0.975), transformation = default_transformation(), ... ) ## S3 method for class 'aghq' compute_quantiles( obj, q = c(0.025, 0.975), transformation = obj$transformation, ... )
obj |
Either the output of |
q |
Numeric vector of values in (0,1). The quantiles to compute. |
transformation |
Optional. Calculate marginal quantiles for a transformation of the parameter
whose posterior was normalized using adaptive quadrature.
|
... |
Used to pass additional arguments. |
interpolation |
Which method to use for interpolating the marginal posterior, |
A named numeric vector containing the quantiles you asked for, for the variable whose marginal posterior you provided.
Other summaries:
compute_pdf_and_cdf()
,
interpolate_marginal_posterior()
,
marginal_posterior()
logfteta2d <- function(eta,y) { # eta is now (eta1,eta2) # y is now (y1,y2) n <- length(y) n1 <- ceiling(n/2) n2 <- floor(n/2) y1 <- y[1:n1] y2 <- y[(n1+1):(n1+n2)] eta1 <- eta[1] eta2 <- eta[2] sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 + sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2 } set.seed(84343124) n1 <- 5 n2 <- 5 n <- n1+n2 y1 <- rpois(n1,5) y2 <- rpois(n2,5) objfunc2d <- function(x) logfteta2d(x,c(y1,y2)) funlist2d <- list( fn = objfunc2d, gr = function(x) numDeriv::grad(objfunc2d,x), he = function(x) numDeriv::hessian(objfunc2d,x) ) opt_sparsetrust_2d <- optimize_theta(funlist2d,c(1.5,1.5)) margpost <- marginal_posterior(opt_sparsetrust_2d,3,1) # margpost for theta1 etaquant <- compute_quantiles(margpost) etaquant # lambda = exp(eta) exp(etaquant) # Compare to truth qgamma(.025,1+sum(y1),1+n1) qgamma(.975,1+sum(y1),1+n1)
logfteta2d <- function(eta,y) { # eta is now (eta1,eta2) # y is now (y1,y2) n <- length(y) n1 <- ceiling(n/2) n2 <- floor(n/2) y1 <- y[1:n1] y2 <- y[(n1+1):(n1+n2)] eta1 <- eta[1] eta2 <- eta[2] sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 + sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2 } set.seed(84343124) n1 <- 5 n2 <- 5 n <- n1+n2 y1 <- rpois(n1,5) y2 <- rpois(n2,5) objfunc2d <- function(x) logfteta2d(x,c(y1,y2)) funlist2d <- list( fn = objfunc2d, gr = function(x) numDeriv::grad(objfunc2d,x), he = function(x) numDeriv::hessian(objfunc2d,x) ) opt_sparsetrust_2d <- optimize_theta(funlist2d,c(1.5,1.5)) margpost <- marginal_posterior(opt_sparsetrust_2d,3,1) # margpost for theta1 etaquant <- compute_quantiles(margpost) etaquant # lambda = exp(eta) exp(etaquant) # Compare to truth qgamma(.025,1+sum(y1),1+n1) qgamma(.975,1+sum(y1),1+n1)
The default method of computation for aghq objects computes approximate marginals using an outdated algorithm with no known theoretical properties. The updated algorithm computes pointwise approximate marginals that satisfy the same rate of convergence as the original approximate marginal likelihood. This function takes a fitted aghq object and recomputes its marginals using the updated algorithm
correct_marginals(quad, ...)
correct_marginals(quad, ...)
quad |
An object of class |
... |
Not used |
An object of class aghq
equal to the provided object, but with its
marginals
component replaced with one calculated using method='correct'
.
See marginal_posterior
.
aghq::aghq()
.Run default_control()
to print the list of valid control parameters
and their defaults, and run with named arguments to change the defaults.
default_control(...)
default_control(...)
... |
You can provide a named value for any control parameter and its
value will be set accordingly. See |
Valid options are:
method
: optimization method to use:
'BFGS' (default): optim(...,method = "BFGS")
'sparse_trust': trustOptim::trust.optim
'SR1': trustOptim::trust.optim
with method = 'SR1'
'sparse': trust::trust
Default is 'sparse_trust'.
negate
: default FALSE
. Multiply the functions in ff
by -1
?
The reason for having this option is for full compatibility with TMB
:
while of course TMB
allows you to code up your log-posterior any way you like,
all of its excellent features including its automatic Laplace approximation and MCMC
sampling with tmbstan
assume you have coded your template to return the
negated log-posterior. However, by default, aghq
assumes you have
provided the log-posterior without negation. Set negate = TRUE
if you
have provided a template which computes the negated log-posterior and its
derivatives.
ndConstruction
: construct a multivariate quadrature rule using a "product"
rule or a "sparse"
grid? Default "product"
. See ?mvQuad::createNIGrid()
.
interpolation
: how to interpolate the marginal posteriors. The 'auto'
option
(default) chooses for you and should always work well. The 'polynomial'
option uses polynom::poly.calc()
to construct a global polynomial interpolant
and has been observed to be unstable as the number of quadrature points gets larger, which
is obviously a bad thing. Try 'spline'
instead, which uses a cubic B-Spline
interpolant from splines::interpSpline()
.
numhessian: logical, default FALSE
. Replace the ff$he
with a numerically-differentiated
version, by calling numDeriv::jacobian
on ff$gr
. Used mainly for TMB
with the automatic
Laplace approximation, which does not have an automatic Hessian.
onlynormconst: logical, default FALSE
. Skip everything after the calculation of the log integral,
and just return the numeric value of the log integral. Saves computation time, and most useful in cases
where aghq
is being used as a step in a more complicated procedure.
method_summaries: default 'reuse'
, method to use to compute moments and marginals. Choosing
'correct'
corresponds to the approximations suggested in the Stochastic Convergence... paper,
which attain the same rate of convergence as the approximation to the marginal likelihood. See ?compute_moment
.
A list of argument values.
default_control() default_control(method = "trust") default_control(negate = TRUE)
default_control() default_control(method = "trust") default_control(negate = TRUE)
aghq::marginal_laplace()
.Run default_control_marglaplace()
to print the list of valid control parameters
and their defaults, and run with named arguments to change the defaults.
default_control_marglaplace(...)
default_control_marglaplace(...)
... |
You can provide a named value for any control parameter and its
value will be set accordingly. See |
Valid options are:
method
: optimization method to use for the theta
optimization:
'BFGS' (default): optim(...,method = "BFGS")
'sparse_trust': trustOptim::trust.optim
'SR1': trustOptim::trust.optim
with method = 'SR1'
'sparse': trust::trust
inner_method
: optimization method to use for the W
optimization; same
options as for method
. Default inner_method
is 'sparse_trust' and default method
is 'BFGS'.
negate
: default FALSE
. Multiply the functions in ff
by -1
?
The reason for having this option is for full compatibility with TMB
:
while of course TMB
allows you to code up your log-posterior any way you like,
all of its excellent features including its automatic Laplace approximation and MCMC
sampling with tmbstan
assume you have coded your template to return the
negated log-posterior. However, by default, aghq
assumes you have
provided the log-posterior without negation. Set negate = TRUE
if you
have provided a template which computes the negated log-posterior and its
derivatives. Note that I don't expect there to be any reason to need this
argument for marginal_laplace
; if you are doing a marginal Laplace approximation
using the automatic Laplace approximation provided by TMB
, you should
check out aghq::marginal_laplace_tmb()
.
interpolation
: how to interpolate the marginal posteriors. The 'auto'
option
(default) chooses for you and should always work well. The 'polynomial'
option uses polynom::poly.calc()
to construct a global polynomial interpolant
and has been observed to be unstable as the number of quadrature points gets larger, which
is obviously a bad thing. Try 'spline'
instead, which uses a cubic B-Spline
interpolant from splines::interpSpline()
.
numhessian: logical, default FALSE
. Replace the ff$he
with a numerically-differentiated
version, by calling numDeriv::jacobian
on ff$gr
. Used mainly for TMB
with the automatic
Laplace approximation, which does not have an automatic Hessian.
onlynormconst: logical, default FALSE
. Skip everything after the calculation of the log integral,
and just return the numeric value of the log integral. Saves computation time, and most useful in cases
where aghq
is being used as a step in a more complicated procedure.
method_summaries: default 'reuse'
, method to use to compute moments and marginals. Choosing
'correct'
corresponds to the approximations suggested in the Stochastic Convergence... paper,
which attain the same rate of convergence as the approximation to the marginal likelihood. See ?compute_moment
.
A list of argument values.
default_control_marglaplace() default_control_marglaplace(method = "trust") default_control_marglaplace(method = "trust",inner_method = "trust") default_control_marglaplace(negate = TRUE)
default_control_marglaplace() default_control_marglaplace(method = "trust") default_control_marglaplace(method = "trust",inner_method = "trust") default_control_marglaplace(negate = TRUE)
aghq::marginal_laplace_tmb()
.Run default_control_marglaplace()
to print the list of valid control parameters
and their defaults, and run with named arguments to change the defaults.
default_control_tmb(...)
default_control_tmb(...)
... |
You can provide a named value for any control parameter and its
value will be set accordingly. See |
Valid options are:
method
: optimization method to use for the theta
optimization:
'BFGS' (default): optim(...,method = "BFGS")
'sparse_trust': trustOptim::trust.optim
'SR1': trustOptim::trust.optim
with method = 'SR1'
'sparse': trust::trust
negate
: default TRUE
. Assumes that your TMB
function
template computes the negated log-posterior, which it must if you're using TMB
's automatic
Laplace approximation, which you must be if you're using this function!.
interpolation
: how to interpolate the marginal posteriors. The 'auto'
option
(default) chooses for you and should always work well. The 'polynomial'
option uses polynom::poly.calc()
to construct a global polynomial interpolant
and has been observed to be unstable as the number of quadrature points gets larger, which
is obviously a bad thing. Try 'spline'
instead, which uses a cubic B-Spline
interpolant from splines::interpSpline()
.
numhessian: logical, default TRUE
. Replace the ff$he
with a numerically-differentiated
version, by calling numDeriv::jacobian
on ff$gr
. Used mainly for TMB
with the automatic
Laplace approximation, which does not have an automatic Hessian.
onlynormconst: logical, default FALSE
. Skip everything after the calculation of the log integral,
and just return the numeric value of the log integral. Saves computation time, and most useful in cases
where aghq
is being used as a step in a more complicated procedure.
method_summaries: default 'reuse'
, method to use to compute moments and marginals. Choosing
'correct'
corresponds to the approximations suggested in the Stochastic Convergence... paper,
which attain the same rate of convergence as the approximation to the marginal likelihood. See ?compute_moment
.
A list of argument values.
default_control_tmb() default_control_tmb(method = "trust")
default_control_tmb() default_control_tmb(method = "trust")
Default (identity) transformation object. Default argument in package functions which accept transformations, and useful for user inspection.
default_transformation()
default_transformation()
Other transformations:
make_transformation()
,
validate_transformation()
default_transformation()
default_transformation()
Measurements on star clusters from Eadie and Harris (2016), for use within the Milky Way mass estimation example. Data are documented extensively by that source.
gcdata
gcdata
An object of class tbl_df
(inherits from tbl
, data.frame
) with 70 rows and 25 columns.
Eadie GM, Harris WE (2016). “Bayesian mass estimates of the Milky Way: the dark and light sides of parameter assumptions.” The Astrophysical Journal, 829(108).
GC data prepared for input into the TMB template, for purposes of example. There are a lot of example-specific data preprocessing steps that are not related to the AGHQ method, so for brevity these are done beforehand.
gcdatalist
gcdatalist
An object of class list
of length 6.
Eadie GM, Harris WE (2016). “Bayesian mass estimates of the Milky Way: the dark and light sides of parameter assumptions.” The Astrophysical Journal, 829(108).
Quick helper method to retrieve the Hessian from an aghq object. Just
calls aghq::get_opt_results
.
get_hessian(obj, ...)
get_hessian(obj, ...)
obj |
Object of class |
... |
Not used |
A numeric matrix of dimension dim(theta) x dim(theta)
containing the negative Hessian of the log-posterior evaluated at the mode.
Other quadrature:
aghq()
,
get_log_normconst()
,
get_mode()
,
get_nodesandweights()
,
get_numquadpoints()
,
get_opt_results()
,
get_param_dim()
,
laplace_approximation()
,
marginal_laplace_tmb()
,
marginal_laplace()
,
nested_quadrature()
,
normalize_logpost()
,
optimize_theta()
,
plot.aghq()
,
print.aghqsummary()
,
print.aghq()
,
print.laplacesummary()
,
print.laplace()
,
print.marginallaplacesummary()
,
summary.aghq()
,
summary.laplace()
,
summary.marginallaplace()
Quick helper S3 method to retrieve the log normalizing constant from an object
created using the aghq package. Methods for a list (returned by aghq::normalize_posterior
)
and for objects of class aghq
, laplace
, and marginallaplace
.
get_log_normconst(obj, ...) ## Default S3 method: get_log_normconst(obj, ...) ## S3 method for class 'numeric' get_log_normconst(obj, ...) ## S3 method for class 'aghq' get_log_normconst(obj, ...) ## S3 method for class 'laplace' get_log_normconst(obj, ...) ## S3 method for class 'marginallaplace' get_log_normconst(obj, ...)
get_log_normconst(obj, ...) ## Default S3 method: get_log_normconst(obj, ...) ## S3 method for class 'numeric' get_log_normconst(obj, ...) ## S3 method for class 'aghq' get_log_normconst(obj, ...) ## S3 method for class 'laplace' get_log_normconst(obj, ...) ## S3 method for class 'marginallaplace' get_log_normconst(obj, ...)
obj |
A list returned by |
... |
Not used |
A number representing the natural logarithm of the approximated normalizing constant.
Other quadrature:
aghq()
,
get_hessian()
,
get_mode()
,
get_nodesandweights()
,
get_numquadpoints()
,
get_opt_results()
,
get_param_dim()
,
laplace_approximation()
,
marginal_laplace_tmb()
,
marginal_laplace()
,
nested_quadrature()
,
normalize_logpost()
,
optimize_theta()
,
plot.aghq()
,
print.aghqsummary()
,
print.aghq()
,
print.laplacesummary()
,
print.laplace()
,
print.marginallaplacesummary()
,
summary.aghq()
,
summary.laplace()
,
summary.marginallaplace()
Quick helper method to retrieve the mode from an aghq object. Just
calls aghq::get_opt_results
.
get_mode(obj, ...)
get_mode(obj, ...)
obj |
Object of class |
... |
Not used |
A numeric vector of length dim(theta)
containing the posterior mode.
Other quadrature:
aghq()
,
get_hessian()
,
get_log_normconst()
,
get_nodesandweights()
,
get_numquadpoints()
,
get_opt_results()
,
get_param_dim()
,
laplace_approximation()
,
marginal_laplace_tmb()
,
marginal_laplace()
,
nested_quadrature()
,
normalize_logpost()
,
optimize_theta()
,
plot.aghq()
,
print.aghqsummary()
,
print.aghq()
,
print.laplacesummary()
,
print.laplace()
,
print.marginallaplacesummary()
,
summary.aghq()
,
summary.laplace()
,
summary.marginallaplace()
Quick helper S3 method to retrieve the quadrature nodes and weights from an object
created using the aghq package. Methods for a list (returned by aghq::normalize_posterior
)
and for objects of class aghq
, laplace
, and marginallaplace
.
get_nodesandweights(obj, ...) ## Default S3 method: get_nodesandweights(obj, ...) ## S3 method for class 'list' get_nodesandweights(obj, ...) ## S3 method for class 'data.frame' get_nodesandweights(obj, ...) ## S3 method for class 'aghq' get_nodesandweights(obj, ...) ## S3 method for class 'laplace' get_nodesandweights(obj, ...) ## S3 method for class 'marginallaplace' get_nodesandweights(obj, ...)
get_nodesandweights(obj, ...) ## Default S3 method: get_nodesandweights(obj, ...) ## S3 method for class 'list' get_nodesandweights(obj, ...) ## S3 method for class 'data.frame' get_nodesandweights(obj, ...) ## S3 method for class 'aghq' get_nodesandweights(obj, ...) ## S3 method for class 'laplace' get_nodesandweights(obj, ...) ## S3 method for class 'marginallaplace' get_nodesandweights(obj, ...)
obj |
A list returned by |
... |
Not used |
A number representing the natural logarithm of the approximated normalizing constant.
Other quadrature:
aghq()
,
get_hessian()
,
get_log_normconst()
,
get_mode()
,
get_numquadpoints()
,
get_opt_results()
,
get_param_dim()
,
laplace_approximation()
,
marginal_laplace_tmb()
,
marginal_laplace()
,
nested_quadrature()
,
normalize_logpost()
,
optimize_theta()
,
plot.aghq()
,
print.aghqsummary()
,
print.aghq()
,
print.laplacesummary()
,
print.laplace()
,
print.marginallaplacesummary()
,
summary.aghq()
,
summary.laplace()
,
summary.marginallaplace()
Quick helper S3 method to retrieve the number of quadrature points used when creating an aghq object.
get_numquadpoints(obj, ...)
get_numquadpoints(obj, ...)
obj |
Object of class |
... |
Not used |
A numeric vector of length 1 containing k
, the number of quadrature points used.
Other quadrature:
aghq()
,
get_hessian()
,
get_log_normconst()
,
get_mode()
,
get_nodesandweights()
,
get_opt_results()
,
get_param_dim()
,
laplace_approximation()
,
marginal_laplace_tmb()
,
marginal_laplace()
,
nested_quadrature()
,
normalize_logpost()
,
optimize_theta()
,
plot.aghq()
,
print.aghqsummary()
,
print.aghq()
,
print.laplacesummary()
,
print.laplace()
,
print.marginallaplacesummary()
,
summary.aghq()
,
summary.laplace()
,
summary.marginallaplace()
Quick helper S3 method to retrieve the mode and Hessian from an aghq object. The
full results of calling aghq::optimize_theta
are stored in obj$optresults
.
get_opt_results(obj, ...) ## S3 method for class 'aghq' get_opt_results(obj, ...) ## S3 method for class 'marginallaplace' get_opt_results(obj, ...)
get_opt_results(obj, ...) ## S3 method for class 'aghq' get_opt_results(obj, ...) ## S3 method for class 'marginallaplace' get_opt_results(obj, ...)
obj |
Object of class |
... |
Not used |
A named list with elements:
mode
: a numeric vector of length dim(theta)
containing the posterior mode.
hessian
: a numeric matrix of dimension dim(theta) x dim(theta)
containing the negative Hessian of the log-posterior evaluated at the mode.
For objects of class marginallaplace
, a third list item modesandhessians
is
a data.frame
containing
the mode and Hessian of the W
parameters evaluated at each adapted quadrature point.
Other quadrature:
aghq()
,
get_hessian()
,
get_log_normconst()
,
get_mode()
,
get_nodesandweights()
,
get_numquadpoints()
,
get_param_dim()
,
laplace_approximation()
,
marginal_laplace_tmb()
,
marginal_laplace()
,
nested_quadrature()
,
normalize_logpost()
,
optimize_theta()
,
plot.aghq()
,
print.aghqsummary()
,
print.aghq()
,
print.laplacesummary()
,
print.laplace()
,
print.marginallaplacesummary()
,
summary.aghq()
,
summary.laplace()
,
summary.marginallaplace()
Quick helper S3 method to retrieve the parameter dimension from an aghq object.
get_param_dim(obj, ...) ## S3 method for class 'aghq' get_param_dim(obj, ...)
get_param_dim(obj, ...) ## S3 method for class 'aghq' get_param_dim(obj, ...)
obj |
Object of class |
... |
Not used |
A numeric vector of length 1 containing p
, the parameter dimension.
Other quadrature:
aghq()
,
get_hessian()
,
get_log_normconst()
,
get_mode()
,
get_nodesandweights()
,
get_numquadpoints()
,
get_opt_results()
,
laplace_approximation()
,
marginal_laplace_tmb()
,
marginal_laplace()
,
nested_quadrature()
,
normalize_logpost()
,
optimize_theta()
,
plot.aghq()
,
print.aghqsummary()
,
print.aghq()
,
print.laplacesummary()
,
print.laplace()
,
print.marginallaplacesummary()
,
summary.aghq()
,
summary.laplace()
,
summary.marginallaplace()
Build a Lagrange polynomial interpolant of the marginal posterior, for plotting and for computing quantiles.
interpolate_marginal_posterior( margpost, method = c("auto", "polynomial", "spline") )
interpolate_marginal_posterior( margpost, method = c("auto", "polynomial", "spline") )
margpost |
The output of |
method |
The method to use. Default is a |
A function of theta
which computes the log interpolated normalized marginal posterior.
Other summaries:
compute_pdf_and_cdf()
,
compute_quantiles()
,
marginal_posterior()
Wrapper function to implement a Laplace approximation to the posterior. A
Laplace approximation is AGHQ with k = 1
quadrature points.
However, the returned
object is of a different class laplace
, and a different summary
method is given for it. It is especially useful for high-dimensional problems where
the curse of dimensionality renders the use of k > 1
quadrature points
infeasible. The summary method reflects the fact that the user may
be using this for a high-dimensional problem, and no plot method is given,
because there isn't anything
interesting to plot.
laplace_approximation( ff, startingvalue, optresults = NULL, control = default_control(), ... )
laplace_approximation( ff, startingvalue, optresults = NULL, control = default_control(), ... )
ff |
A list with three elements:
The user may wish to use |
startingvalue |
Value to start the optimization. |
optresults |
Optional. A list of the results of the optimization of the log
posterior, formatted according to the output of |
control |
A list with elements
|
... |
Additional arguments to be passed to |
An object of class laplace
with summary and plot methods. This
is simply a list with elements lognormconst
containing the log of the
approximate normalizing constant, and optresults
containing the optimization
results formatted the same way as optimize_theta
and aghq
.
Other quadrature:
aghq()
,
get_hessian()
,
get_log_normconst()
,
get_mode()
,
get_nodesandweights()
,
get_numquadpoints()
,
get_opt_results()
,
get_param_dim()
,
marginal_laplace_tmb()
,
marginal_laplace()
,
nested_quadrature()
,
normalize_logpost()
,
optimize_theta()
,
plot.aghq()
,
print.aghqsummary()
,
print.aghq()
,
print.laplacesummary()
,
print.laplace()
,
print.marginallaplacesummary()
,
summary.aghq()
,
summary.laplace()
,
summary.marginallaplace()
logfteta2d <- function(eta,y) { # eta is now (eta1,eta2) # y is now (y1,y2) n <- length(y) n1 <- ceiling(n/2) n2 <- floor(n/2) y1 <- y[1:n1] y2 <- y[(n1+1):(n1+n2)] eta1 <- eta[1] eta2 <- eta[2] sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 + sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2 } set.seed(84343124) n1 <- 5 n2 <- 5 n <- n1+n2 y1 <- rpois(n1,5) y2 <- rpois(n2,5) objfunc2d <- function(x) logfteta2d(x,c(y1,y2)) funlist2d <- list( fn = objfunc2d, gr = function(x) numDeriv::grad(objfunc2d,x), he = function(x) numDeriv::hessian(objfunc2d,x) ) thequadrature <- aghq(funlist2d,3,c(0,0))
logfteta2d <- function(eta,y) { # eta is now (eta1,eta2) # y is now (y1,y2) n <- length(y) n1 <- ceiling(n/2) n2 <- floor(n/2) y1 <- y[1:n1] y2 <- y[(n1+1):(n1+n2)] eta1 <- eta[1] eta2 <- eta[2] sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 + sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2 } set.seed(84343124) n1 <- 5 n2 <- 5 n <- n1+n2 y1 <- rpois(n1,5) y2 <- rpois(n2,5) objfunc2d <- function(x) logfteta2d(x,c(y1,y2)) funlist2d <- list( fn = objfunc2d, gr = function(x) numDeriv::grad(objfunc2d,x), he = function(x) numDeriv::hessian(objfunc2d,x) ) thequadrature <- aghq(funlist2d,3,c(0,0))
Given an object quad
of class aghq
returned by aghq::aghq()
, aghq::compute_moment()
will compute the moment of a positive function g(theta)
of parameter theta
. The present function,
aghq::make_moment_function()
, assists the user in constructing the appropriate input to aghq::compute_moment()
.
make_moment_function(...) ## S3 method for class 'aghqmoment' make_moment_function(gg, ...) ## S3 method for class 'aghqtrans' make_moment_function(gg, ...) ## S3 method for class ''function'' make_moment_function(gg, ...) ## S3 method for class 'character' make_moment_function(gg, ...) ## S3 method for class 'list' make_moment_function(gg, ...) ## Default S3 method: make_moment_function(gg, ...)
make_moment_function(...) ## S3 method for class 'aghqmoment' make_moment_function(gg, ...) ## S3 method for class 'aghqtrans' make_moment_function(gg, ...) ## S3 method for class ''function'' make_moment_function(gg, ...) ## S3 method for class 'character' make_moment_function(gg, ...) ## S3 method for class 'list' make_moment_function(gg, ...) ## Default S3 method: make_moment_function(gg, ...)
... |
Used to pass arguments to methods. |
gg |
LOGARITHM of function |
The approximation of moments of positive functions implemented in aghq::compute_moment()
achieves the same asymptotic rate of convergence as the marginal likelihood. This involves computing a new mode and
Hessian depending on the original posterior mode and Hessian, and g
. These computations are handled by aghq::compute_moment()
,
re-using information from the original quadrature when feasible.
Computation of moments is defined only for scalar-valued functions, with a vector moment just defined as a vector of moments. Consequently,
the user may input to aghq:compute_moment()
a function g: R^p -> R^q+
for any q
, and that function will return the corresponding
vector of moments. This is handled within aghq::compute_moment()
. The aghq::make_moment_function()
interface accepts the logarithm of gg: R^p -> R^+
, i.e.
a multivariable, scalar-valued positive function. This is mostly to keep first and second derivatives as 1d and 2d arrays (i.e. the gradient and the Hessian);
I deemed it too confusing for the user and the code-base to work with Jacobians and 2nd derivative tensors (if you're confused just reading this, there you go!).
But, see aghq::compute_moment()
for how to handle the very common case where the same transformation is desired of all parameter coordinates; for example
when all parameters are on the log-scale and you want to compute E(exp(theta))
for vector theta
.
If gg
is a function
or a character
(like 'exp'
) it is first passed to match.fun
, and then the output
object is constructed using numDeriv::grad()
and numDeriv::hessian()
. If gg
is a list
then it is assumed to
have elements fn
, gr
, and he
of the correct form, and these elements are extracted and then passed back to make_moment_function()
.
If gg
is an object of class aghqtrans
returned by aghq::make_transformation()
, then gg$fromtheta
is passed back to make_moment_function()
. If gg
is an object of class aghqtrans
then it is just returned.
Object of class aghqmoment
, which is a list with elements fn
,
gr
, and he
, exactly like the input to aghq::aghq()
and related functions. Here gg$fn
is
log(gg(theta))
, gg$gr
is its gradient, and gg$he
its Hessian.
Object is suitable for checking with aghq::validate_moment()
and for inputting into aghq::compute_moment()
.
Other moments:
validate_moment()
# E(exp(x)) mom1 <- make_moment_function(force) # force = function(x) x mom2 <- make_moment_function('force') mom3 <- make_moment_function(list(fn=function(x) x,gr=function(x) 1,he = function(x) 0))
# E(exp(x)) mom1 <- make_moment_function(force) # force = function(x) x mom2 <- make_moment_function('force') mom3 <- make_moment_function(list(fn=function(x) x,gr=function(x) 1,he = function(x) 0))
Create a function suitable for computation of numeric moments. This function is
used internally by compute_moment
when the user chooses nn
, and is
unlikely to need to be called by a user directly.
make_numeric_moment_function(nn, j, quad = NULL, centre = 0, shift = NULL, ...) get_shift(gg)
make_numeric_moment_function(nn, j, quad = NULL, centre = 0, shift = NULL, ...) get_shift(gg)
nn |
Order of moment to be computed, see |
j |
Numeric, positive integer, index of parameter vector to compute the numeric moment for. |
quad |
Optional, object of class |
centre |
Numeric scalar, added to |
shift |
Numeric scalar, amount by which to shift |
... |
Not used. |
gg |
Object of class |
Object of class aghqmoment
, see make_moment_function
These functions make it easier for the user to represent marginal parameter transformations
for which inferences are to be made. Suppose quadrature is done on the posterior for parameter theta
,
but interest lies in parameter lambda = g(theta)
for smooth, monotone, univariate
g
. This interface lets the user provide g
, g^-1
, and (optionally)
the Jacobian dtheta/dlambda
, and aghq
will do quadrature on the theta
scale
but report summaries on the lambda
scale. See a note in the Details below about
multidimensional parameters.
make_transformation(...) ## S3 method for class 'aghqtrans' make_transformation(transobj, ...) ## S3 method for class 'list' make_transformation(translist, ...) ## Default S3 method: make_transformation(totheta, fromtheta, jacobian = NULL, ...)
make_transformation(...) ## S3 method for class 'aghqtrans' make_transformation(transobj, ...) ## S3 method for class 'list' make_transformation(translist, ...) ## Default S3 method: make_transformation(totheta, fromtheta, jacobian = NULL, ...)
... |
Used to pass arguments to methods. |
transobj |
An object of class |
translist |
A list with elements |
totheta |
Inverse function |
fromtheta |
Function |
jacobian |
(optional) Function taking |
Often, the scale on which quadrature is done is not the scale on which the user
wishes to make inferences. For example, when a parameter lambda>0
is
of interest, the posterior for theta = log(lambda)
may be better approximated
by a log-quadratic than that for lambda
, so running aghq
on the
likelihood and prior for theta
may lead to faster and more stable optimization
as well as more accurate estimates. But, interest is still in the original parameter
lambda = exp(theta)
.
These considerations are by no means unique to the use of quadrature-based approximate
Bayesian inferences. However, when using (say) MCMC
, inferences for summaries
of transformations of the parameter are just as easy as for the un-transformed parameter.
When using quadrature, a little bit more work is needed.
The aghq
package provides an interface for computing
posterior summaries of smooth, monotonic parameter transformations. If quadrature
is done on parameter theta
and g(theta)
is a univariate, smooth, monotone function,
then inferences are made for lambda = g(theta)
. In the case that theta
is
p
-dimensional, p > 1
, the supplied function g
is understood to
take in theta_1...theta_p
and return g_1(theta_1)...g_p(theta_p)
. The
Jacobian is diagonal.
To reiterate, all of this discussion applies only to marginal parameter transformations.
For the full joint parameter, the only summary statistics you can even calculate at all
(at present?) are moments, and you can already calculate the moment of any function h(theta)
using aghq::compute_moment
, so no additional interface is needed here.
Object of class aghqtrans
, which is simply a list with elements totheta
,
fromtheta
, and jacobian
. Object is suitable for checking with aghq::validate_transformation
and for inputting into any function in aghq
which takes a transformation
argument.
Other transformations:
default_transformation()
,
validate_transformation()
make_transformation('log','exp') make_transformation(log,exp)
make_transformation('log','exp') make_transformation(log,exp)
Implement the marginal Laplace approximation of Tierney and Kadane (1986) for
finding the marginal posterior (theta | Y)
from an unnormalized joint posterior
(W,theta,Y)
where W
is high dimensional and theta
is low dimensional.
See the AGHQ
software paper for a detailed example, or Stringer et. al. (2020).
marginal_laplace( ff, k, startingvalue, transformation = default_transformation(), optresults = NULL, control = default_control_marglaplace(), ... )
marginal_laplace( ff, k, startingvalue, transformation = default_transformation(), optresults = NULL, control = default_control_marglaplace(), ... )
ff |
A function list similar to that required by
|
k |
Integer, the number of quadrature points to use. I suggest at least 3. k = 1 corresponds to a Laplace approximation. |
startingvalue |
A list with elements |
transformation |
Optional. Do the quadrature for parameter |
optresults |
Optional. A list of the results of the optimization of the log
posterior, formatted according to the output of |
control |
A list with elements
Default |
... |
Additional arguments to be passed to |
If k > 1
, an object of class marginallaplace
, which includes
the result of calling aghq::aghq
on
the Laplace approximation of (theta|Y)
, .... See software paper for full details.
If k = 1
, an object of class laplace
which is the result of calling
aghq::laplace_approximation
on
the Laplace approximation of (theta|Y)
.
Other quadrature:
aghq()
,
get_hessian()
,
get_log_normconst()
,
get_mode()
,
get_nodesandweights()
,
get_numquadpoints()
,
get_opt_results()
,
get_param_dim()
,
laplace_approximation()
,
marginal_laplace_tmb()
,
nested_quadrature()
,
normalize_logpost()
,
optimize_theta()
,
plot.aghq()
,
print.aghqsummary()
,
print.aghq()
,
print.laplacesummary()
,
print.laplace()
,
print.marginallaplacesummary()
,
summary.aghq()
,
summary.laplace()
,
summary.marginallaplace()
logfteta2d <- function(eta,y) { # eta is now (eta1,eta2) # y is now (y1,y2) n <- length(y) n1 <- ceiling(n/2) n2 <- floor(n/2) y1 <- y[1:n1] y2 <- y[(n1+1):(n1+n2)] eta1 <- eta[1] eta2 <- eta[2] sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 + sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2 } set.seed(84343124) n1 <- 5 n2 <- 5 n <- n1+n2 y1 <- rpois(n1,5) y2 <- rpois(n2,5) objfunc2d <- function(x) logfteta2d(x,c(y1,y2)) objfunc2dmarg <- function(W,theta) objfunc2d(c(W,theta)) objfunc2dmarggr <- function(W,theta) { fn <- function(W) objfunc2dmarg(W,theta) numDeriv::grad(fn,W) } objfunc2dmarghe <- function(W,theta) { fn <- function(W) objfunc2dmarg(W,theta) numDeriv::hessian(fn,W) } funlist2dmarg <- list( fn = objfunc2dmarg, gr = objfunc2dmarggr, he = objfunc2dmarghe )
logfteta2d <- function(eta,y) { # eta is now (eta1,eta2) # y is now (y1,y2) n <- length(y) n1 <- ceiling(n/2) n2 <- floor(n/2) y1 <- y[1:n1] y2 <- y[(n1+1):(n1+n2)] eta1 <- eta[1] eta2 <- eta[2] sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 + sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2 } set.seed(84343124) n1 <- 5 n2 <- 5 n <- n1+n2 y1 <- rpois(n1,5) y2 <- rpois(n2,5) objfunc2d <- function(x) logfteta2d(x,c(y1,y2)) objfunc2dmarg <- function(W,theta) objfunc2d(c(W,theta)) objfunc2dmarggr <- function(W,theta) { fn <- function(W) objfunc2dmarg(W,theta) numDeriv::grad(fn,W) } objfunc2dmarghe <- function(W,theta) { fn <- function(W) objfunc2dmarg(W,theta) numDeriv::hessian(fn,W) } funlist2dmarg <- list( fn = objfunc2dmarg, gr = objfunc2dmarggr, he = objfunc2dmarghe )
Implement the algorithm from aghq::marginal_laplace()
, but making use of
TMB
's automatic Laplace approximation. This function takes a function
list from TMB::MakeADFun()
with a non-empty set of random
parameters,
in which the fn
and gr
are the unnormalized marginal Laplace
approximation and its gradient. It then calls aghq::aghq()
and formats
the resulting object so that its contents and class match the output of
aghq::marginal_laplace()
and are hence suitable for post-processing
with summary
, aghq::sample_marginal()
, and so on.
marginal_laplace_tmb( ff, k, startingvalue, transformation = default_transformation(), optresults = NULL, basegrid = NULL, control = default_control_tmb(), ... )
marginal_laplace_tmb( ff, k, startingvalue, transformation = default_transformation(), optresults = NULL, basegrid = NULL, control = default_control_tmb(), ... )
ff |
The output of calling |
k |
Integer, the number of quadrature points to use. I suggest at least 3. k = 1 corresponds to a Laplace approximation. |
startingvalue |
Value to start the optimization. |
transformation |
Optional. Do the quadrature for parameter |
optresults |
Optional. A list of the results of the optimization of the log
posterior, formatted according to the output of |
basegrid |
Optional. Provide an object of class |
control |
A list of control parameters. See
. |
... |
Additional arguments to be passed to |
Because TMB
does not yet have the Hessian of the log marginal Laplace
approximation implemented, a numerically-differentiated jacobian of the gradient
is used via numDeriv::jacobian()
. You can turn this off (using ff$he()
instead,
which you'll have to modify yourself) using default_control_tmb(numhessian = FALSE)
.
If k > 1
, an object of class marginallaplace
(and inheriting from class aghq
) of the same
structure as that returned by aghq::marginal_laplace()
, with plot
and summary
methods, and suitable for input into aghq::sample_marginal()
for drawing posterior samples.
Other quadrature:
aghq()
,
get_hessian()
,
get_log_normconst()
,
get_mode()
,
get_nodesandweights()
,
get_numquadpoints()
,
get_opt_results()
,
get_param_dim()
,
laplace_approximation()
,
marginal_laplace()
,
nested_quadrature()
,
normalize_logpost()
,
optimize_theta()
,
plot.aghq()
,
print.aghqsummary()
,
print.aghq()
,
print.laplacesummary()
,
print.laplace()
,
print.marginallaplacesummary()
,
summary.aghq()
,
summary.laplace()
,
summary.marginallaplace()
Compute the marginal posterior for a given parameter using AGHQ. This function is
mostly called within aghq()
.
marginal_posterior(...) ## S3 method for class 'aghq' marginal_posterior( quad, j, qq = NULL, method = c("auto", "reuse", "correct"), ... ) ## S3 method for class 'list' marginal_posterior( optresults, k, j, basegrid = NULL, ndConstruction = "product", ... )
marginal_posterior(...) ## S3 method for class 'aghq' marginal_posterior( quad, j, qq = NULL, method = c("auto", "reuse", "correct"), ... ) ## S3 method for class 'list' marginal_posterior( optresults, k, j, basegrid = NULL, ndConstruction = "product", ... )
... |
Additional arguments to be passed to |
quad |
Object returned by |
j |
Integer between 1 and the dimension of the parameter space. Which index of the parameter vector to compute the marginal posterior for. |
qq |
Numeric vector of length |
method |
Method for computing the quadrature points used to approximate moment. One of 'reuse' (default) or 'correct'. See details. The default SHOULD be 'correct'; it is currently set to 'reuse' to maintain compatibility of results with previous versions. This will be switched in a future major release. |
optresults |
The results of calling |
k |
Integer, the number of quadrature points to use. I suggest at least 3. k = 1 corresponds to a Laplace approximation. |
basegrid |
Optional. Provide an object of class |
ndConstruction |
Create a multivariate grid using a product or sparse construction?
Passed directly to |
If qq=NULL
, then it is set to the unique values in an adapted GHQ grid computed
assuming that j=1
(there is nothing special about this procedure, it's just a way to provide
an apparently sensible default).
If method='reuse'
, then the parameter vector is reordered so j=1
, and the
approximate marginal is computed by first computing the whole AGHQ grid, then summing over the other
indices. This is an outdated method that does not have any theory pertaining to it, and is included for
backwards compatibility. It does not use qq
if supplied.
If method='correct'
then the theoretically-justified approximation from Section 2.4 of the 'Stochastic Convergence Rates...'
paper is returned.
method='auto'
currently chooses 'reuse'
for backwards compatibility, but this will be
changed in a future release.
a data.frame containing the normalized log marginal posterior
for theta_j evaluated at the original quadrature points. Has columns
"thetaj","logpost_normalized","weights"
, where j
is the j
you specified.
Other summaries:
compute_pdf_and_cdf()
,
compute_quantiles()
,
interpolate_marginal_posterior()
## A 2d example ## logfteta2d <- function(eta,y) { # eta is now (eta1,eta2) # y is now (y1,y2) n <- length(y) n1 <- ceiling(n/2) n2 <- floor(n/2) y1 <- y[1:n1] y2 <- y[(n1+1):(n1+n2)] eta1 <- eta[1] eta2 <- eta[2] sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 + sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2 } set.seed(84343124) n1 <- 5 n2 <- 5 n <- n1+n2 y1 <- rpois(n1,5) y2 <- rpois(n2,5) objfunc2d <- function(x) logfteta2d(x,c(y1,y2)) funlist2d <- list( fn = objfunc2d, gr = function(x) numDeriv::grad(objfunc2d,x), he = function(x) numDeriv::hessian(objfunc2d,x) ) opt_sparsetrust_2d <- optimize_theta(funlist2d,c(1.5,1.5)) # Now actually do the marginal posteriors marginal_posterior(opt_sparsetrust_2d,3,1) marginal_posterior(opt_sparsetrust_2d,3,2) marginal_posterior(opt_sparsetrust_2d,7,2)
## A 2d example ## logfteta2d <- function(eta,y) { # eta is now (eta1,eta2) # y is now (y1,y2) n <- length(y) n1 <- ceiling(n/2) n2 <- floor(n/2) y1 <- y[1:n1] y2 <- y[(n1+1):(n1+n2)] eta1 <- eta[1] eta2 <- eta[2] sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 + sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2 } set.seed(84343124) n1 <- 5 n2 <- 5 n <- n1+n2 y1 <- rpois(n1,5) y2 <- rpois(n2,5) objfunc2d <- function(x) logfteta2d(x,c(y1,y2)) funlist2d <- list( fn = objfunc2d, gr = function(x) numDeriv::grad(objfunc2d,x), he = function(x) numDeriv::hessian(objfunc2d,x) ) opt_sparsetrust_2d <- optimize_theta(funlist2d,c(1.5,1.5)) # Now actually do the marginal posteriors marginal_posterior(opt_sparsetrust_2d,3,1) marginal_posterior(opt_sparsetrust_2d,3,2) marginal_posterior(opt_sparsetrust_2d,7,2)
Compute a whole sequence of log normalizing constants
for 1,3,5,...,k
points,
using only the function evaluations from the k
-point nested rule.
nested_quadrature(optresults, k, ndConstruction = "product", ...) adaptive_nested_quadrature(optresults, k, ndConstruction = "product", ...) get_quadtable(p, k, ndConstruction = "product", ...)
nested_quadrature(optresults, k, ndConstruction = "product", ...) adaptive_nested_quadrature(optresults, k, ndConstruction = "product", ...) get_quadtable(p, k, ndConstruction = "product", ...)
optresults |
The results of calling |
k |
Integer, the number of quadrature points to use. |
ndConstruction |
Create a multivariate grid using a product or sparse construction?
Passed directly to |
... |
Additional arguments to be passed to |
p |
Dimension of the variable of integration. |
get_quadtable
currently uses mvQuad
to compute the nodes and weights. This will be replaced
by a manual reading of the pre-tabulated nodes and weights.
nested_quadrature
and adaptive_nested_quadrature
take the log function values, just like optimize_theta()
,
and return the log of the base/adapted quadrature rule.
For get_quadtable
, a pre-computed table of nodes for the k
-point rule,
with weights for the points from each of the 1,3,...,k
-point rules, for passing to
nested_quadrature
. For nested_quadrature
and adaptive_nested_quadrature
, a named numeric vector of optresults$fn
values for each k
.
Other quadrature:
aghq()
,
get_hessian()
,
get_log_normconst()
,
get_mode()
,
get_nodesandweights()
,
get_numquadpoints()
,
get_opt_results()
,
get_param_dim()
,
laplace_approximation()
,
marginal_laplace_tmb()
,
marginal_laplace()
,
normalize_logpost()
,
optimize_theta()
,
plot.aghq()
,
print.aghqsummary()
,
print.aghq()
,
print.laplacesummary()
,
print.laplace()
,
print.marginallaplacesummary()
,
summary.aghq()
,
summary.laplace()
,
summary.marginallaplace()
# Same setup as optimize_theta logfteta <- function(eta,y) { sum(y) * eta - (length(y) + 1) * exp(eta) - sum(lgamma(y+1)) + eta } set.seed(84343124) y <- rpois(10,5) # Mode should be sum(y) / (10 + 1) truemode <- log((sum(y) + 1)/(length(y) + 1)) objfunc <- function(x) logfteta(x,y) funlist <- list( fn = objfunc, gr = function(x) numDeriv::grad(objfunc,x), he = function(x) numDeriv::hessian(objfunc,x) ) opt_sparsetrust <- optimize_theta(funlist,1.5)
# Same setup as optimize_theta logfteta <- function(eta,y) { sum(y) * eta - (length(y) + 1) * exp(eta) - sum(lgamma(y+1)) + eta } set.seed(84343124) y <- rpois(10,5) # Mode should be sum(y) / (10 + 1) truemode <- log((sum(y) + 1)/(length(y) + 1)) objfunc <- function(x) logfteta(x,y) funlist <- list( fn = objfunc, gr = function(x) numDeriv::grad(objfunc,x), he = function(x) numDeriv::hessian(objfunc,x) ) opt_sparsetrust <- optimize_theta(funlist,1.5)
This function takes in the optimization results from aghq::optimize_theta()
and returns a list with the quadrature points, weights, and normalization
information. Like aghq::optimize_theta()
, this is designed for use only within
aghq::aghq
, but is exported for debugging and documented in case you want to
modify it somehow, or something.
normalize_logpost( optresults, k, whichfirst = 1, basegrid = NULL, ndConstruction = "product", ... )
normalize_logpost( optresults, k, whichfirst = 1, basegrid = NULL, ndConstruction = "product", ... )
optresults |
The results of calling |
k |
Integer, the number of quadrature points to use. I suggest at least 3. k = 1 corresponds to a Laplace approximation. |
whichfirst |
Integer between 1 and the dimension of the parameter space, default 1. The user shouldn't have to worry about this: it's used internally to re-order the parameter vector before doing the quadrature, which is useful when calculating marginal posteriors. |
basegrid |
Optional. Provide an object of class |
ndConstruction |
Create a multivariate grid using a product or sparse construction?
Passed directly to |
... |
Additional arguments to be passed to |
If k > 1, a list with elements:
nodesandweights
: a dataframe containing the nodes and weights for the adaptive quadrature rule, with the un-normalized and normalized log posterior evaluated at the nodes.
thegrid
: a NIGrid
object from the mvQuad
package, see ?mvQuad::createNIGrid
.
lognormconst
: the actual result of the quadrature: the log of the normalizing constant of the posterior.
Other quadrature:
aghq()
,
get_hessian()
,
get_log_normconst()
,
get_mode()
,
get_nodesandweights()
,
get_numquadpoints()
,
get_opt_results()
,
get_param_dim()
,
laplace_approximation()
,
marginal_laplace_tmb()
,
marginal_laplace()
,
nested_quadrature()
,
optimize_theta()
,
plot.aghq()
,
print.aghqsummary()
,
print.aghq()
,
print.laplacesummary()
,
print.laplace()
,
print.marginallaplacesummary()
,
summary.aghq()
,
summary.laplace()
,
summary.marginallaplace()
# Same setup as optimize_theta logfteta <- function(eta,y) { sum(y) * eta - (length(y) + 1) * exp(eta) - sum(lgamma(y+1)) + eta } set.seed(84343124) y <- rpois(10,5) # Mode should be sum(y) / (10 + 1) truemode <- log((sum(y) + 1)/(length(y) + 1)) objfunc <- function(x) logfteta(x,y) funlist <- list( fn = objfunc, gr = function(x) numDeriv::grad(objfunc,x), he = function(x) numDeriv::hessian(objfunc,x) ) opt_sparsetrust <- optimize_theta(funlist,1.5) opt_trust <- optimize_theta(funlist,1.5,control = default_control(method = "trust")) opt_bfgs <- optimize_theta(funlist,1.5,control = default_control(method = "BFGS")) # Quadrature with 3, 5, and 7 points using sparse trust region optimization: norm_sparse_3 <- normalize_logpost(opt_sparsetrust,3,1) norm_sparse_5 <- normalize_logpost(opt_sparsetrust,5,1) norm_sparse_7 <- normalize_logpost(opt_sparsetrust,7,1) # Quadrature with 3, 5, and 7 points using dense trust region optimization: norm_trust_3 <- normalize_logpost(opt_trust,3,1) norm_trust_5 <- normalize_logpost(opt_trust,5,1) norm_trust_7 <- normalize_logpost(opt_trust,7,1) # Quadrature with 3, 5, and 7 points using BFGS optimization: norm_bfgs_3 <- normalize_logpost(opt_bfgs,3,1) norm_bfgs_5 <- normalize_logpost(opt_bfgs,5,1) norm_bfgs_7 <- normalize_logpost(opt_bfgs,7,1)
# Same setup as optimize_theta logfteta <- function(eta,y) { sum(y) * eta - (length(y) + 1) * exp(eta) - sum(lgamma(y+1)) + eta } set.seed(84343124) y <- rpois(10,5) # Mode should be sum(y) / (10 + 1) truemode <- log((sum(y) + 1)/(length(y) + 1)) objfunc <- function(x) logfteta(x,y) funlist <- list( fn = objfunc, gr = function(x) numDeriv::grad(objfunc,x), he = function(x) numDeriv::hessian(objfunc,x) ) opt_sparsetrust <- optimize_theta(funlist,1.5) opt_trust <- optimize_theta(funlist,1.5,control = default_control(method = "trust")) opt_bfgs <- optimize_theta(funlist,1.5,control = default_control(method = "BFGS")) # Quadrature with 3, 5, and 7 points using sparse trust region optimization: norm_sparse_3 <- normalize_logpost(opt_sparsetrust,3,1) norm_sparse_5 <- normalize_logpost(opt_sparsetrust,5,1) norm_sparse_7 <- normalize_logpost(opt_sparsetrust,7,1) # Quadrature with 3, 5, and 7 points using dense trust region optimization: norm_trust_3 <- normalize_logpost(opt_trust,3,1) norm_trust_5 <- normalize_logpost(opt_trust,5,1) norm_trust_7 <- normalize_logpost(opt_trust,7,1) # Quadrature with 3, 5, and 7 points using BFGS optimization: norm_bfgs_3 <- normalize_logpost(opt_bfgs,3,1) norm_bfgs_5 <- normalize_logpost(opt_bfgs,5,1) norm_bfgs_7 <- normalize_logpost(opt_bfgs,7,1)
This function computes the two pieces of information needed about
the log posterior to do adaptive quadrature: the mode, and the hessian at the mode.
It is designed for use within aghq::aghq
, but is exported in case users
need to debug the optimization process and documented in case users want to
write their own optimizations.
optimize_theta(ff, startingvalue, control = default_control(), ...)
optimize_theta(ff, startingvalue, control = default_control(), ...)
ff |
A list with three elements:
The user may wish to use |
startingvalue |
Value to start the optimization. |
control |
A list with elements
|
... |
Additional arguments to be passed to |
A list with elements
ff
: the function list that was provided
mode
: the mode of the log posterior
hessian
: the hessian of the log posterior at the mode
convergence
: specific to the optimizer used, a message indicating whether it converged
Other quadrature:
aghq()
,
get_hessian()
,
get_log_normconst()
,
get_mode()
,
get_nodesandweights()
,
get_numquadpoints()
,
get_opt_results()
,
get_param_dim()
,
laplace_approximation()
,
marginal_laplace_tmb()
,
marginal_laplace()
,
nested_quadrature()
,
normalize_logpost()
,
plot.aghq()
,
print.aghqsummary()
,
print.aghq()
,
print.laplacesummary()
,
print.laplace()
,
print.marginallaplacesummary()
,
summary.aghq()
,
summary.laplace()
,
summary.marginallaplace()
# Poisson/Exponential example logfteta <- function(eta,y) { sum(y) * eta - (length(y) + 1) * exp(eta) - sum(lgamma(y+1)) + eta } y <- rpois(10,5) # Mode should be (sum(y) + 1) / (length(y) + 1) objfunc <- function(x) logfteta(x,y) funlist <- list( fn = objfunc, gr = function(x) numDeriv::grad(objfunc,x), he = function(x) numDeriv::hessian(objfunc,x) ) optimize_theta(funlist,1.5) optimize_theta(funlist,1.5,control = default_control(method = "trust")) optimize_theta(funlist,1.5,control = default_control(method = "BFGS"))
# Poisson/Exponential example logfteta <- function(eta,y) { sum(y) * eta - (length(y) + 1) * exp(eta) - sum(lgamma(y+1)) + eta } y <- rpois(10,5) # Mode should be (sum(y) + 1) / (length(y) + 1) objfunc <- function(x) logfteta(x,y) funlist <- list( fn = objfunc, gr = function(x) numDeriv::grad(objfunc,x), he = function(x) numDeriv::hessian(objfunc,x) ) optimize_theta(funlist,1.5) optimize_theta(funlist,1.5,control = default_control(method = "trust")) optimize_theta(funlist,1.5,control = default_control(method = "BFGS"))
Plot the marginal pdf and cdf of the transformed parameter from an aghq
object.
## S3 method for class 'aghq' plot(x, ...)
## S3 method for class 'aghq' plot(x, ...)
x |
The return value of |
... |
not used. |
Silently plots.
Other quadrature:
aghq()
,
get_hessian()
,
get_log_normconst()
,
get_mode()
,
get_nodesandweights()
,
get_numquadpoints()
,
get_opt_results()
,
get_param_dim()
,
laplace_approximation()
,
marginal_laplace_tmb()
,
marginal_laplace()
,
nested_quadrature()
,
normalize_logpost()
,
optimize_theta()
,
print.aghqsummary()
,
print.aghq()
,
print.laplacesummary()
,
print.laplace()
,
print.marginallaplacesummary()
,
summary.aghq()
,
summary.laplace()
,
summary.marginallaplace()
Other quadrature:
aghq()
,
get_hessian()
,
get_log_normconst()
,
get_mode()
,
get_nodesandweights()
,
get_numquadpoints()
,
get_opt_results()
,
get_param_dim()
,
laplace_approximation()
,
marginal_laplace_tmb()
,
marginal_laplace()
,
nested_quadrature()
,
normalize_logpost()
,
optimize_theta()
,
print.aghqsummary()
,
print.aghq()
,
print.laplacesummary()
,
print.laplace()
,
print.marginallaplacesummary()
,
summary.aghq()
,
summary.laplace()
,
summary.marginallaplace()
logfteta2d <- function(eta,y) { # eta is now (eta1,eta2) # y is now (y1,y2) n <- length(y) n1 <- ceiling(n/2) n2 <- floor(n/2) y1 <- y[1:n1] y2 <- y[(n1+1):(n1+n2)] eta1 <- eta[1] eta2 <- eta[2] sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 + sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2 } set.seed(84343124) n1 <- 5 n2 <- 5 n <- n1+n2 y1 <- rpois(n1,5) y2 <- rpois(n2,5) objfunc2d <- function(x) logfteta2d(x,c(y1,y2)) funlist2d <- list( fn = objfunc2d, gr = function(x) numDeriv::grad(objfunc2d,x), he = function(x) numDeriv::hessian(objfunc2d,x) ) thequadrature <- aghq(funlist2d,3,c(0,0)) plot(thequadrature)
logfteta2d <- function(eta,y) { # eta is now (eta1,eta2) # y is now (y1,y2) n <- length(y) n1 <- ceiling(n/2) n2 <- floor(n/2) y1 <- y[1:n1] y2 <- y[(n1+1):(n1+n2)] eta1 <- eta[1] eta2 <- eta[2] sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 + sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2 } set.seed(84343124) n1 <- 5 n2 <- 5 n <- n1+n2 y1 <- rpois(n1,5) y2 <- rpois(n2,5) objfunc2d <- function(x) logfteta2d(x,c(y1,y2)) funlist2d <- list( fn = objfunc2d, gr = function(x) numDeriv::grad(objfunc2d,x), he = function(x) numDeriv::hessian(objfunc2d,x) ) thequadrature <- aghq(funlist2d,3,c(0,0)) plot(thequadrature)
Pretty print the object– just gives some basic information and then suggests
the user call summary(...)
.
## S3 method for class 'aghq' print(x, ...)
## S3 method for class 'aghq' print(x, ...)
x |
An object of class |
... |
not used. |
Silently prints summary information.
Other quadrature:
aghq()
,
get_hessian()
,
get_log_normconst()
,
get_mode()
,
get_nodesandweights()
,
get_numquadpoints()
,
get_opt_results()
,
get_param_dim()
,
laplace_approximation()
,
marginal_laplace_tmb()
,
marginal_laplace()
,
nested_quadrature()
,
normalize_logpost()
,
optimize_theta()
,
plot.aghq()
,
print.aghqsummary()
,
print.laplacesummary()
,
print.laplace()
,
print.marginallaplacesummary()
,
summary.aghq()
,
summary.laplace()
,
summary.marginallaplace()
logfteta2d <- function(eta,y) { # eta is now (eta1,eta2) # y is now (y1,y2) n <- length(y) n1 <- ceiling(n/2) n2 <- floor(n/2) y1 <- y[1:n1] y2 <- y[(n1+1):(n1+n2)] eta1 <- eta[1] eta2 <- eta[2] sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 + sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2 } set.seed(84343124) n1 <- 5 n2 <- 5 n <- n1+n2 y1 <- rpois(n1,5) y2 <- rpois(n2,5) objfunc2d <- function(x) logfteta2d(x,c(y1,y2)) funlist2d <- list( fn = objfunc2d, gr = function(x) numDeriv::grad(objfunc2d,x), he = function(x) numDeriv::hessian(objfunc2d,x) ) thequadrature <- aghq(funlist2d,3,c(0,0)) thequadrature
logfteta2d <- function(eta,y) { # eta is now (eta1,eta2) # y is now (y1,y2) n <- length(y) n1 <- ceiling(n/2) n2 <- floor(n/2) y1 <- y[1:n1] y2 <- y[(n1+1):(n1+n2)] eta1 <- eta[1] eta2 <- eta[2] sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 + sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2 } set.seed(84343124) n1 <- 5 n2 <- 5 n <- n1+n2 y1 <- rpois(n1,5) y2 <- rpois(n2,5) objfunc2d <- function(x) logfteta2d(x,c(y1,y2)) funlist2d <- list( fn = objfunc2d, gr = function(x) numDeriv::grad(objfunc2d,x), he = function(x) numDeriv::hessian(objfunc2d,x) ) thequadrature <- aghq(funlist2d,3,c(0,0)) thequadrature
Print the summary of an aghq
object. Almost always called by invoking
summary(...)
interactively in the console.
## S3 method for class 'aghqsummary' print(x, ...)
## S3 method for class 'aghqsummary' print(x, ...)
x |
The result of calling |
... |
not used. |
Silently prints summary information.
Other quadrature:
aghq()
,
get_hessian()
,
get_log_normconst()
,
get_mode()
,
get_nodesandweights()
,
get_numquadpoints()
,
get_opt_results()
,
get_param_dim()
,
laplace_approximation()
,
marginal_laplace_tmb()
,
marginal_laplace()
,
nested_quadrature()
,
normalize_logpost()
,
optimize_theta()
,
plot.aghq()
,
print.aghq()
,
print.laplacesummary()
,
print.laplace()
,
print.marginallaplacesummary()
,
summary.aghq()
,
summary.laplace()
,
summary.marginallaplace()
Other quadrature:
aghq()
,
get_hessian()
,
get_log_normconst()
,
get_mode()
,
get_nodesandweights()
,
get_numquadpoints()
,
get_opt_results()
,
get_param_dim()
,
laplace_approximation()
,
marginal_laplace_tmb()
,
marginal_laplace()
,
nested_quadrature()
,
normalize_logpost()
,
optimize_theta()
,
plot.aghq()
,
print.aghq()
,
print.laplacesummary()
,
print.laplace()
,
print.marginallaplacesummary()
,
summary.aghq()
,
summary.laplace()
,
summary.marginallaplace()
logfteta2d <- function(eta,y) { # eta is now (eta1,eta2) # y is now (y1,y2) n <- length(y) n1 <- ceiling(n/2) n2 <- floor(n/2) y1 <- y[1:n1] y2 <- y[(n1+1):(n1+n2)] eta1 <- eta[1] eta2 <- eta[2] sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 + sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2 } set.seed(84343124) n1 <- 5 n2 <- 5 n <- n1+n2 y1 <- rpois(n1,5) y2 <- rpois(n2,5) objfunc2d <- function(x) logfteta2d(x,c(y1,y2)) funlist2d <- list( fn = objfunc2d, gr = function(x) numDeriv::grad(objfunc2d,x), he = function(x) numDeriv::hessian(objfunc2d,x) ) thequadrature <- aghq(funlist2d,3,c(0,0)) # Summarize and automatically call its print() method when called interactively: summary(thequadrature)
logfteta2d <- function(eta,y) { # eta is now (eta1,eta2) # y is now (y1,y2) n <- length(y) n1 <- ceiling(n/2) n2 <- floor(n/2) y1 <- y[1:n1] y2 <- y[(n1+1):(n1+n2)] eta1 <- eta[1] eta2 <- eta[2] sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 + sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2 } set.seed(84343124) n1 <- 5 n2 <- 5 n <- n1+n2 y1 <- rpois(n1,5) y2 <- rpois(n2,5) objfunc2d <- function(x) logfteta2d(x,c(y1,y2)) funlist2d <- list( fn = objfunc2d, gr = function(x) numDeriv::grad(objfunc2d,x), he = function(x) numDeriv::hessian(objfunc2d,x) ) thequadrature <- aghq(funlist2d,3,c(0,0)) # Summarize and automatically call its print() method when called interactively: summary(thequadrature)
Pretty print the object– just gives some basic information and then suggests
the user call summary(...)
.
## S3 method for class 'laplace' print(x, ...)
## S3 method for class 'laplace' print(x, ...)
x |
An object of class |
... |
not used. |
Silently prints summary information.
Other quadrature:
aghq()
,
get_hessian()
,
get_log_normconst()
,
get_mode()
,
get_nodesandweights()
,
get_numquadpoints()
,
get_opt_results()
,
get_param_dim()
,
laplace_approximation()
,
marginal_laplace_tmb()
,
marginal_laplace()
,
nested_quadrature()
,
normalize_logpost()
,
optimize_theta()
,
plot.aghq()
,
print.aghqsummary()
,
print.aghq()
,
print.laplacesummary()
,
print.marginallaplacesummary()
,
summary.aghq()
,
summary.laplace()
,
summary.marginallaplace()
logfteta2d <- function(eta,y) { # eta is now (eta1,eta2) # y is now (y1,y2) n <- length(y) n1 <- ceiling(n/2) n2 <- floor(n/2) y1 <- y[1:n1] y2 <- y[(n1+1):(n1+n2)] eta1 <- eta[1] eta2 <- eta[2] sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 + sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2 } set.seed(84343124) n1 <- 5 n2 <- 5 n <- n1+n2 y1 <- rpois(n1,5) y2 <- rpois(n2,5) objfunc2d <- function(x) logfteta2d(x,c(y1,y2)) funlist2d <- list( fn = objfunc2d, gr = function(x) numDeriv::grad(objfunc2d,x), he = function(x) numDeriv::hessian(objfunc2d,x) ) thequadrature <- aghq(funlist2d,3,c(0,0)) thequadrature
logfteta2d <- function(eta,y) { # eta is now (eta1,eta2) # y is now (y1,y2) n <- length(y) n1 <- ceiling(n/2) n2 <- floor(n/2) y1 <- y[1:n1] y2 <- y[(n1+1):(n1+n2)] eta1 <- eta[1] eta2 <- eta[2] sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 + sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2 } set.seed(84343124) n1 <- 5 n2 <- 5 n <- n1+n2 y1 <- rpois(n1,5) y2 <- rpois(n2,5) objfunc2d <- function(x) logfteta2d(x,c(y1,y2)) funlist2d <- list( fn = objfunc2d, gr = function(x) numDeriv::grad(objfunc2d,x), he = function(x) numDeriv::hessian(objfunc2d,x) ) thequadrature <- aghq(funlist2d,3,c(0,0)) thequadrature
Print the summary of an laplace
object. Almost always called by invoking
summary(...)
interactively in the console.
## S3 method for class 'laplacesummary' print(x, ...)
## S3 method for class 'laplacesummary' print(x, ...)
x |
The result of calling |
... |
not used. |
Silently prints summary information.
Other quadrature:
aghq()
,
get_hessian()
,
get_log_normconst()
,
get_mode()
,
get_nodesandweights()
,
get_numquadpoints()
,
get_opt_results()
,
get_param_dim()
,
laplace_approximation()
,
marginal_laplace_tmb()
,
marginal_laplace()
,
nested_quadrature()
,
normalize_logpost()
,
optimize_theta()
,
plot.aghq()
,
print.aghqsummary()
,
print.aghq()
,
print.laplace()
,
print.marginallaplacesummary()
,
summary.aghq()
,
summary.laplace()
,
summary.marginallaplace()
Other quadrature:
aghq()
,
get_hessian()
,
get_log_normconst()
,
get_mode()
,
get_nodesandweights()
,
get_numquadpoints()
,
get_opt_results()
,
get_param_dim()
,
laplace_approximation()
,
marginal_laplace_tmb()
,
marginal_laplace()
,
nested_quadrature()
,
normalize_logpost()
,
optimize_theta()
,
plot.aghq()
,
print.aghqsummary()
,
print.aghq()
,
print.laplace()
,
print.marginallaplacesummary()
,
summary.aghq()
,
summary.laplace()
,
summary.marginallaplace()
logfteta2d <- function(eta,y) { # eta is now (eta1,eta2) # y is now (y1,y2) n <- length(y) n1 <- ceiling(n/2) n2 <- floor(n/2) y1 <- y[1:n1] y2 <- y[(n1+1):(n1+n2)] eta1 <- eta[1] eta2 <- eta[2] sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 + sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2 } set.seed(84343124) n1 <- 5 n2 <- 5 n <- n1+n2 y1 <- rpois(n1,5) y2 <- rpois(n2,5) objfunc2d <- function(x) logfteta2d(x,c(y1,y2)) funlist2d <- list( fn = objfunc2d, gr = function(x) numDeriv::grad(objfunc2d,x), he = function(x) numDeriv::hessian(objfunc2d,x) ) thelaplace <- laplace_approximation(funlist2d,c(0,0)) # Summarize and automatically call its print() method when called interactively: summary(thelaplace)
logfteta2d <- function(eta,y) { # eta is now (eta1,eta2) # y is now (y1,y2) n <- length(y) n1 <- ceiling(n/2) n2 <- floor(n/2) y1 <- y[1:n1] y2 <- y[(n1+1):(n1+n2)] eta1 <- eta[1] eta2 <- eta[2] sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 + sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2 } set.seed(84343124) n1 <- 5 n2 <- 5 n <- n1+n2 y1 <- rpois(n1,5) y2 <- rpois(n2,5) objfunc2d <- function(x) logfteta2d(x,c(y1,y2)) funlist2d <- list( fn = objfunc2d, gr = function(x) numDeriv::grad(objfunc2d,x), he = function(x) numDeriv::hessian(objfunc2d,x) ) thelaplace <- laplace_approximation(funlist2d,c(0,0)) # Summarize and automatically call its print() method when called interactively: summary(thelaplace)
The summary.marginallaplace
calls summary.aghq
, but also computes
summary statistics of the random effects, by drawing from their approximate
posterior using aghq::sample_marginal
with the specified number
of samples.
## S3 method for class 'marginallaplacesummary' print(x, ...)
## S3 method for class 'marginallaplacesummary' print(x, ...)
x |
Object of class |
... |
not used. |
Nothing. Prints contents.
Other quadrature:
aghq()
,
get_hessian()
,
get_log_normconst()
,
get_mode()
,
get_nodesandweights()
,
get_numquadpoints()
,
get_opt_results()
,
get_param_dim()
,
laplace_approximation()
,
marginal_laplace_tmb()
,
marginal_laplace()
,
nested_quadrature()
,
normalize_logpost()
,
optimize_theta()
,
plot.aghq()
,
print.aghqsummary()
,
print.aghq()
,
print.laplacesummary()
,
print.laplace()
,
summary.aghq()
,
summary.laplace()
,
summary.marginallaplace()
logfteta2d <- function(eta,y) { # eta is now (eta1,eta2) # y is now (y1,y2) n <- length(y) n1 <- ceiling(n/2) n2 <- floor(n/2) y1 <- y[1:n1] y2 <- y[(n1+1):(n1+n2)] eta1 <- eta[1] eta2 <- eta[2] sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 + sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2 } set.seed(84343124) n1 <- 5 n2 <- 5 n <- n1+n2 y1 <- rpois(n1,5) y2 <- rpois(n2,5) objfunc2d <- function(x) logfteta2d(x,c(y1,y2)) objfunc2dmarg <- function(W,theta) objfunc2d(c(W,theta)) objfunc2dmarggr <- function(W,theta) { fn <- function(W) objfunc2dmarg(W,theta) numDeriv::grad(fn,W) } objfunc2dmarghe <- function(W,theta) { fn <- function(W) objfunc2dmarg(W,theta) numDeriv::hessian(fn,W) } funlist2dmarg <- list( fn = objfunc2dmarg, gr = objfunc2dmarggr, he = objfunc2dmarghe ) themarginallaplace <- aghq::marginal_laplace(funlist2dmarg,3,list(W = 0,theta = 0)) summary(themarginallaplace)
logfteta2d <- function(eta,y) { # eta is now (eta1,eta2) # y is now (y1,y2) n <- length(y) n1 <- ceiling(n/2) n2 <- floor(n/2) y1 <- y[1:n1] y2 <- y[(n1+1):(n1+n2)] eta1 <- eta[1] eta2 <- eta[2] sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 + sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2 } set.seed(84343124) n1 <- 5 n2 <- 5 n <- n1+n2 y1 <- rpois(n1,5) y2 <- rpois(n2,5) objfunc2d <- function(x) logfteta2d(x,c(y1,y2)) objfunc2dmarg <- function(W,theta) objfunc2d(c(W,theta)) objfunc2dmarggr <- function(W,theta) { fn <- function(W) objfunc2dmarg(W,theta) numDeriv::grad(fn,W) } objfunc2dmarghe <- function(W,theta) { fn <- function(W) objfunc2dmarg(W,theta) numDeriv::hessian(fn,W) } funlist2dmarg <- list( fn = objfunc2dmarg, gr = objfunc2dmarggr, he = objfunc2dmarghe ) themarginallaplace <- aghq::marginal_laplace(funlist2dmarg,3,list(W = 0,theta = 0)) summary(themarginallaplace)
Draws samples from an approximate marginal distribution for general posteriors
approximated using aghq
, or from the mixture-of-Gaussians approximation to the variables that were
marginalized over in a marginal Laplace approximation fit using aghq::marginal_laplace
or aghq::marginal_laplace_tmb
.
sample_marginal( quad, M, transformation = default_transformation(), interpolation = "auto", ... ) ## S3 method for class 'aghq' sample_marginal( quad, M, transformation = quad$transformation, interpolation = "auto", ... ) ## S3 method for class 'marginallaplace' sample_marginal( quad, M, transformation = quad$transformation, interpolation = "auto", ... )
sample_marginal( quad, M, transformation = default_transformation(), interpolation = "auto", ... ) ## S3 method for class 'aghq' sample_marginal( quad, M, transformation = quad$transformation, interpolation = "auto", ... ) ## S3 method for class 'marginallaplace' sample_marginal( quad, M, transformation = quad$transformation, interpolation = "auto", ... )
quad |
Object from which to draw samples.
An object inheriting from class |
M |
Numeric, integer saying how many samples to draw |
transformation |
Optional. Draw samples for a transformation of the parameter
whose posterior was normalized using adaptive quadrature.
|
interpolation |
Which method to use for interpolating the marginal posteriors
(and hence to draw samples using the inverse CDF method), |
... |
Used to pass additional arguments. |
For objects of class aghq
or their marginal distribution components,
sampling is done using the inverse CDF method, which is just compute_quantiles(quad$marginals[[1]],runif(M))
.
For marginal Laplace approximations (aghq::marginal_laplace()
): this method samples from the posterior and returns a vector that is ordered
the same as the "W
" variables in your marginal Laplace approximation. See Algorithm 1 in
Stringer et. al. (2021, https://arxiv.org/abs/2103.07425) for the algorithm; the details of sampling
from a Gaussian are described in the reference(s) therein, which makes use of the (sparse)
Cholesky factors. These are computed once for each quadrature point and stored.
For the marginal Laplace approximations where the "inner" model is handled entirely by TMB
(aghq::marginal_laplace_tmb
), the interface here is identical to above,
with the order of the "W
" vector being determined by TMB
. See the
names
of ff$env$last.par
, for example (where ff
is your
template obtained from a call to TMB::MakeADFun
.
If getOption('mc.cores',1L) > 1
, the Cholesky decompositions of the Hessians are computed
in parallel using parallel::mcapply
, for the Gaussian approximation involved for objects of class marginallaplace
. This step is slow
so may be sped up by parallelization, if the matrices are sparse (and hence the operation is just slow, but not memory-intensive).
Uses the parallel
package so is not available on Windows.
If run on a marginallaplace
object, a list containing elements:
samps
: d x M
matrix where d = dim(W)
and each column is a sample
from pi(W|Y,theta)
theta
: M x S
tibble where S = dim(theta)
containing the value of theta
for
each sample
thetasamples
: A list of S
numeric vectors each of length
M
where the j
th element is a sample from pi(theta_{j}|Y)
. These are samples
from the marginals, NOT the joint. Sampling from the joint is a much more difficult
problem and how to do so in this context is an active area of research.
If run on an aghq
object, then a list with just the thetasamples
element. It still
returns a list to maintain output consistency across inputs.
If, for some reason, you don't want to do the sampling from pi(theta|Y)
, you can manually
set quad$marginals = NULL
. Note that this sampling is typically very fast
and so I don't know why you would need to not do it but the option is there if you like.
If, again for some reason, you just want samples from one marginal distribution using inverse CDF,
you can just do compute_quantiles(quad$marginals[[1]],runif(M))
.
logfteta2d <- function(eta,y) { # eta is now (eta1,eta2) # y is now (y1,y2) n <- length(y) n1 <- ceiling(n/2) n2 <- floor(n/2) y1 <- y[1:n1] y2 <- y[(n1+1):(n1+n2)] eta1 <- eta[1] eta2 <- eta[2] sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 + sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2 } set.seed(84343124) n1 <- 5 n2 <- 5 n <- n1+n2 y1 <- rpois(n1,5) y2 <- rpois(n2,5) objfunc2d <- function(x) logfteta2d(x,c(y1,y2)) objfunc2dmarg <- function(W,theta) objfunc2d(c(W,theta)) objfunc2dmarggr <- function(W,theta) { fn <- function(W) objfunc2dmarg(W,theta) numDeriv::grad(fn,W) } objfunc2dmarghe <- function(W,theta) { fn <- function(W) objfunc2dmarg(W,theta) numDeriv::hessian(fn,W) } funlist2dmarg <- list( fn = objfunc2dmarg, gr = objfunc2dmarggr, he = objfunc2dmarghe )
logfteta2d <- function(eta,y) { # eta is now (eta1,eta2) # y is now (y1,y2) n <- length(y) n1 <- ceiling(n/2) n2 <- floor(n/2) y1 <- y[1:n1] y2 <- y[(n1+1):(n1+n2)] eta1 <- eta[1] eta2 <- eta[2] sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 + sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2 } set.seed(84343124) n1 <- 5 n2 <- 5 n <- n1+n2 y1 <- rpois(n1,5) y2 <- rpois(n2,5) objfunc2d <- function(x) logfteta2d(x,c(y1,y2)) objfunc2dmarg <- function(W,theta) objfunc2d(c(W,theta)) objfunc2dmarggr <- function(W,theta) { fn <- function(W) objfunc2dmarg(W,theta) numDeriv::grad(fn,W) } objfunc2dmarghe <- function(W,theta) { fn <- function(W) objfunc2dmarg(W,theta) numDeriv::hessian(fn,W) } funlist2dmarg <- list( fn = objfunc2dmarg, gr = objfunc2dmarggr, he = objfunc2dmarghe )
The summary.aghq
method computes means, standard deviations, and
quantiles of the transformed parameter.
The associated print method
prints these along with diagnostic and other information about
the quadrature.
## S3 method for class 'aghq' summary(object, ...)
## S3 method for class 'aghq' summary(object, ...)
object |
The return value from |
... |
not used. |
A list of class aghqsummary
, which has a print method. Elements:
mode: the mode of the log posterior
hessian: the hessian of the log posterior at the mode
covariance: the inverse of the hessian of the log posterior at the mode
cholesky: the upper Cholesky triangle of the hessian of the log posterior at the mode
quadpoints: the number of quadrature points used in each dimension
dim: the dimension of the parameter space
summarytable: a table containing the mean, median, mode, standard deviation and quantiles of each transformed parameter, computed according to the posterior normalized using AGHQ
Other quadrature:
aghq()
,
get_hessian()
,
get_log_normconst()
,
get_mode()
,
get_nodesandweights()
,
get_numquadpoints()
,
get_opt_results()
,
get_param_dim()
,
laplace_approximation()
,
marginal_laplace_tmb()
,
marginal_laplace()
,
nested_quadrature()
,
normalize_logpost()
,
optimize_theta()
,
plot.aghq()
,
print.aghqsummary()
,
print.aghq()
,
print.laplacesummary()
,
print.laplace()
,
print.marginallaplacesummary()
,
summary.laplace()
,
summary.marginallaplace()
logfteta2d <- function(eta,y) { # eta is now (eta1,eta2) # y is now (y1,y2) n <- length(y) n1 <- ceiling(n/2) n2 <- floor(n/2) y1 <- y[1:n1] y2 <- y[(n1+1):(n1+n2)] eta1 <- eta[1] eta2 <- eta[2] sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 + sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2 } set.seed(84343124) n1 <- 5 n2 <- 5 n <- n1+n2 y1 <- rpois(n1,5) y2 <- rpois(n2,5) objfunc2d <- function(x) logfteta2d(x,c(y1,y2)) funlist2d <- list( fn = objfunc2d, gr = function(x) numDeriv::grad(objfunc2d,x), he = function(x) numDeriv::hessian(objfunc2d,x) ) thequadrature <- aghq(funlist2d,3,c(0,0)) # Summarize and automatically call its print() method when called interactively: summary(thequadrature) # or, compute the summary and save for further processing: ss <- summary(thequadrature) str(ss)
logfteta2d <- function(eta,y) { # eta is now (eta1,eta2) # y is now (y1,y2) n <- length(y) n1 <- ceiling(n/2) n2 <- floor(n/2) y1 <- y[1:n1] y2 <- y[(n1+1):(n1+n2)] eta1 <- eta[1] eta2 <- eta[2] sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 + sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2 } set.seed(84343124) n1 <- 5 n2 <- 5 n <- n1+n2 y1 <- rpois(n1,5) y2 <- rpois(n2,5) objfunc2d <- function(x) logfteta2d(x,c(y1,y2)) funlist2d <- list( fn = objfunc2d, gr = function(x) numDeriv::grad(objfunc2d,x), he = function(x) numDeriv::hessian(objfunc2d,x) ) thequadrature <- aghq(funlist2d,3,c(0,0)) # Summarize and automatically call its print() method when called interactively: summary(thequadrature) # or, compute the summary and save for further processing: ss <- summary(thequadrature) str(ss)
Summary method for objects of class laplace
. Similar
to the method for objects of class aghq
, but assumes the
problem is high-dimensional and does not compute or
print any large objects or summaries. See summary.aghq
for
further information.
## S3 method for class 'laplace' summary(object, ...)
## S3 method for class 'laplace' summary(object, ...)
object |
An object of class |
... |
not used. |
Silently prints summary information.
Other quadrature:
aghq()
,
get_hessian()
,
get_log_normconst()
,
get_mode()
,
get_nodesandweights()
,
get_numquadpoints()
,
get_opt_results()
,
get_param_dim()
,
laplace_approximation()
,
marginal_laplace_tmb()
,
marginal_laplace()
,
nested_quadrature()
,
normalize_logpost()
,
optimize_theta()
,
plot.aghq()
,
print.aghqsummary()
,
print.aghq()
,
print.laplacesummary()
,
print.laplace()
,
print.marginallaplacesummary()
,
summary.aghq()
,
summary.marginallaplace()
Other quadrature:
aghq()
,
get_hessian()
,
get_log_normconst()
,
get_mode()
,
get_nodesandweights()
,
get_numquadpoints()
,
get_opt_results()
,
get_param_dim()
,
laplace_approximation()
,
marginal_laplace_tmb()
,
marginal_laplace()
,
nested_quadrature()
,
normalize_logpost()
,
optimize_theta()
,
plot.aghq()
,
print.aghqsummary()
,
print.aghq()
,
print.laplacesummary()
,
print.laplace()
,
print.marginallaplacesummary()
,
summary.aghq()
,
summary.marginallaplace()
logfteta2d <- function(eta,y) { # eta is now (eta1,eta2) # y is now (y1,y2) n <- length(y) n1 <- ceiling(n/2) n2 <- floor(n/2) y1 <- y[1:n1] y2 <- y[(n1+1):(n1+n2)] eta1 <- eta[1] eta2 <- eta[2] sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 + sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2 } set.seed(84343124) n1 <- 5 n2 <- 5 n <- n1+n2 y1 <- rpois(n1,5) y2 <- rpois(n2,5) objfunc2d <- function(x) logfteta2d(x,c(y1,y2)) funlist2d <- list( fn = objfunc2d, gr = function(x) numDeriv::grad(objfunc2d,x), he = function(x) numDeriv::hessian(objfunc2d,x) ) thelaplace <- laplace_approximation(funlist2d,c(0,0)) # Summarize and automatically call its print() method when called interactively: summary(thelaplace)
logfteta2d <- function(eta,y) { # eta is now (eta1,eta2) # y is now (y1,y2) n <- length(y) n1 <- ceiling(n/2) n2 <- floor(n/2) y1 <- y[1:n1] y2 <- y[(n1+1):(n1+n2)] eta1 <- eta[1] eta2 <- eta[2] sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 + sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2 } set.seed(84343124) n1 <- 5 n2 <- 5 n <- n1+n2 y1 <- rpois(n1,5) y2 <- rpois(n2,5) objfunc2d <- function(x) logfteta2d(x,c(y1,y2)) funlist2d <- list( fn = objfunc2d, gr = function(x) numDeriv::grad(objfunc2d,x), he = function(x) numDeriv::hessian(objfunc2d,x) ) thelaplace <- laplace_approximation(funlist2d,c(0,0)) # Summarize and automatically call its print() method when called interactively: summary(thelaplace)
The summary.marginallaplace
calls summary.aghq
, but also computes
summary statistics of the random effects, by drawing from their approximate
posterior using aghq::sample_marginal
with the specified number
of samples.
## S3 method for class 'marginallaplace' summary(object, M = 1000, max_print = 30, ...)
## S3 method for class 'marginallaplace' summary(object, M = 1000, max_print = 30, ...)
object |
Object inheriting from both classes |
M |
Number of samples to use to compute summary statistics of the random effects.
Default |
max_print |
Sometimes there are a lot of random effects. If there are more random
effects than |
... |
not used. |
A list containing an object of class aghqsummary
(see summary.aghq
).
Other quadrature:
aghq()
,
get_hessian()
,
get_log_normconst()
,
get_mode()
,
get_nodesandweights()
,
get_numquadpoints()
,
get_opt_results()
,
get_param_dim()
,
laplace_approximation()
,
marginal_laplace_tmb()
,
marginal_laplace()
,
nested_quadrature()
,
normalize_logpost()
,
optimize_theta()
,
plot.aghq()
,
print.aghqsummary()
,
print.aghq()
,
print.laplacesummary()
,
print.laplace()
,
print.marginallaplacesummary()
,
summary.aghq()
,
summary.laplace()
logfteta2d <- function(eta,y) { # eta is now (eta1,eta2) # y is now (y1,y2) n <- length(y) n1 <- ceiling(n/2) n2 <- floor(n/2) y1 <- y[1:n1] y2 <- y[(n1+1):(n1+n2)] eta1 <- eta[1] eta2 <- eta[2] sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 + sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2 } set.seed(84343124) n1 <- 5 n2 <- 5 n <- n1+n2 y1 <- rpois(n1,5) y2 <- rpois(n2,5) objfunc2d <- function(x) logfteta2d(x,c(y1,y2)) objfunc2dmarg <- function(W,theta) objfunc2d(c(W,theta)) objfunc2dmarggr <- function(W,theta) { fn <- function(W) objfunc2dmarg(W,theta) numDeriv::grad(fn,W) } objfunc2dmarghe <- function(W,theta) { fn <- function(W) objfunc2dmarg(W,theta) numDeriv::hessian(fn,W) } funlist2dmarg <- list( fn = objfunc2dmarg, gr = objfunc2dmarggr, he = objfunc2dmarghe ) themarginallaplace <- aghq::marginal_laplace(funlist2dmarg,3,list(W = 0,theta = 0)) summary(themarginallaplace)
logfteta2d <- function(eta,y) { # eta is now (eta1,eta2) # y is now (y1,y2) n <- length(y) n1 <- ceiling(n/2) n2 <- floor(n/2) y1 <- y[1:n1] y2 <- y[(n1+1):(n1+n2)] eta1 <- eta[1] eta2 <- eta[2] sum(y1) * eta1 - (length(y1) + 1) * exp(eta1) - sum(lgamma(y1+1)) + eta1 + sum(y2) * eta2 - (length(y2) + 1) * exp(eta2) - sum(lgamma(y2+1)) + eta2 } set.seed(84343124) n1 <- 5 n2 <- 5 n <- n1+n2 y1 <- rpois(n1,5) y2 <- rpois(n2,5) objfunc2d <- function(x) logfteta2d(x,c(y1,y2)) objfunc2dmarg <- function(W,theta) objfunc2d(c(W,theta)) objfunc2dmarggr <- function(W,theta) { fn <- function(W) objfunc2dmarg(W,theta) numDeriv::grad(fn,W) } objfunc2dmarghe <- function(W,theta) { fn <- function(W) objfunc2dmarg(W,theta) numDeriv::hessian(fn,W) } funlist2dmarg <- list( fn = objfunc2dmarg, gr = objfunc2dmarggr, he = objfunc2dmarghe ) themarginallaplace <- aghq::marginal_laplace(funlist2dmarg,3,list(W = 0,theta = 0)) summary(themarginallaplace)
This function checks that the names and value types for a supplied control
list
are valid and are unlikely to cause further errors within aghq
and related functions.
Users should not have to worry about this and should just use default_control()
and related
constructors.
validate_control(control, type = c("aghq", "marglaplace", "tmb"), ...)
validate_control(control, type = c("aghq", "marglaplace", "tmb"), ...)
control |
A list. |
type |
One of |
... |
Not used. |
To users reading this: just use default_control()
, default_control_marglaplace()
, or default_control_tmb()
as appropriate, to ensure that your control arguments are correct. This function just exists to provide more
descriptive error messages in the event that an incompatible list is provided.
Logical, TRUE
if the list of control arguments is valid, else FALSE
.
validate_control(default_control()) validate_control(default_control_marglaplace(),type = "marglaplace") validate_control(default_control_tmb(),type = "tmb")
validate_control(default_control()) validate_control(default_control_marglaplace(),type = "marglaplace") validate_control(default_control_tmb(),type = "tmb")
Routine for checking whether a given moment function object is valid.
validate_moment(...) ## S3 method for class 'aghqmoment' validate_moment(moment, checkpositive = FALSE, ...) ## S3 method for class 'list' validate_moment(moment, checkpositive = FALSE, ...) ## S3 method for class ''function'' validate_moment(moment, checkpositive = FALSE, ...) ## S3 method for class 'character' validate_moment(moment, checkpositive = FALSE, ...) ## Default S3 method: validate_moment(moment, ...)
validate_moment(...) ## S3 method for class 'aghqmoment' validate_moment(moment, checkpositive = FALSE, ...) ## S3 method for class 'list' validate_moment(moment, checkpositive = FALSE, ...) ## S3 method for class ''function'' validate_moment(moment, checkpositive = FALSE, ...) ## S3 method for class 'character' validate_moment(moment, checkpositive = FALSE, ...) ## Default S3 method: validate_moment(moment, ...)
... |
Used to pass arguments to methods. |
moment |
An object to check if it is a valid moment function or not. Can be an object of class |
checkpositive |
Default |
This function checks that:
The supplied object contains elements fn
, gr
, and he
, and that they are all functions,
If checkpositive
is a vector of numbers, then it checks that gg$fn(checkpositive)
is not -Inf
, NA
, or NaN
. (It actually uses is.infinite
for the first.)
In addition, if a list
is provided, the function first checks that it contains the right elements,
then passes it to make_moment_function
, then checks that. If a function
or a character
is provided,
it checks that match.fun
works, and returns any errors or warnings from doing so in a clear way.
This function throws an informative error messages when checks don't pass or themselves throw errors.
TRUE
if the function runs to completion without throwing an error.
Other moments:
make_moment_function()
mom1 <- make_moment_function(exp) mom2 <- make_moment_function('exp') mom3 <- make_moment_function(list(fn=function(x) x,gr=function(x) 1,he = function(x) 0)) validate_moment(mom1) validate_moment(mom2) validate_moment(mom3) ## Not run: mombad1 <- list(exp,exp,exp) # No names mombad2 <- list('exp','exp','exp') # List of not functions mombad3 <- make_moment_function(function(x) -exp(x)) # Not positive validate_moment(mombad1) validate_moment(mombad2) validate_moment(mombad3) ## End(Not run)
mom1 <- make_moment_function(exp) mom2 <- make_moment_function('exp') mom3 <- make_moment_function(list(fn=function(x) x,gr=function(x) 1,he = function(x) 0)) validate_moment(mom1) validate_moment(mom2) validate_moment(mom3) ## Not run: mombad1 <- list(exp,exp,exp) # No names mombad2 <- list('exp','exp','exp') # List of not functions mombad3 <- make_moment_function(function(x) -exp(x)) # Not positive validate_moment(mombad1) validate_moment(mombad2) validate_moment(mombad3) ## End(Not run)
Routine for checking whether a given transformation is valid.
validate_transformation(...) ## S3 method for class 'aghqtrans' validate_transformation(trans, checkinverse = FALSE, ...) ## S3 method for class 'list' validate_transformation(translist, checkinverse = FALSE, ...) ## Default S3 method: validate_transformation(...)
validate_transformation(...) ## S3 method for class 'aghqtrans' validate_transformation(trans, checkinverse = FALSE, ...) ## S3 method for class 'list' validate_transformation(translist, checkinverse = FALSE, ...) ## Default S3 method: validate_transformation(...)
... |
Used to pass arguments to methods. |
trans |
A transformation object of class |
checkinverse |
Default |
translist |
A list. Will be checked, passed to |
This function checks that:
The supplied object contains elements totheta
, fromtheta
, and jacobian
, and that they are all functions,
If checkinverse
is a vector of numbers, then it checks that totheta(fromtheta(checkinverse)) == checkinverse
.
In addition, if a list
is provided, the function first checks that it contains the right elements,
then passes it to make_transformation
, then checks that.
This function throws an informative error messages when checks don't pass or themselves throw errors.
TRUE
if the function runs to completion without throwing an error.
Other transformations:
default_transformation()
,
make_transformation()
t <- make_transformation(log,exp) validate_transformation(t) t2 <- list(totheta = log,fromtheta = exp) validate_transformation(t2) ## Not run: t3 <- make_transformation(log,log) checkvals <- exp(exp(rnorm(10))) # Should throw an informative error because log isn't the inverse of log. validate_transformation(t3,checkinverse = checkvals) ## End(Not run)
t <- make_transformation(log,exp) validate_transformation(t) t2 <- list(totheta = log,fromtheta = exp) validate_transformation(t2) ## Not run: t3 <- make_transformation(log,log) checkvals <- exp(exp(rnorm(10))) # Should throw an informative error because log isn't the inverse of log. validate_transformation(t3,checkinverse = checkvals) ## End(Not run)