Package: aghq 0.4.3

aghq: Adaptive Gauss Hermite Quadrature for Bayesian Inference

Adaptive Gauss Hermite Quadrature for Bayesian inference. The AGHQ method for normalizing posterior distributions and making Bayesian inferences based on them. Functions are provided for doing quadrature and marginal Laplace approximations, and summary methods are provided for making inferences based on the results. See Stringer (2021). "Implementing Adaptive Quadrature for Bayesian Inference: the aghq Package" <arxiv:2101.04468>.

Authors:Alex Stringer

aghq_0.4.3.tar.gz
aghq_0.4.3.zip(r-4.5)aghq_0.4.3.zip(r-4.4)aghq_0.4.3.zip(r-4.3)
aghq_0.4.3.tgz(r-4.4-any)aghq_0.4.3.tgz(r-4.3-any)
aghq_0.4.3.tar.gz(r-4.5-noble)aghq_0.4.3.tar.gz(r-4.4-noble)
aghq_0.4.3.tgz(r-4.4-emscripten)aghq_0.4.3.tgz(r-4.3-emscripten)
aghq.pdf |aghq.html
aghq/json (API)
NEWS

# Install 'aghq' in R:
install.packages('aghq', repos = c('https://awstringer1.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/awstringer1/aghq/issues

Datasets:
  • gcdata - Globular Clusters data for Milky Way mass estimation
  • gcdatalist - Transformed Globular Clusters data

On CRAN:

5.87 score 4 stars 1 packages 62 scripts 316 downloads 33 exports 8 dependencies

Last updated 11 months agofrom:5c320d26b2. Checks:3 OK, 4 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 13 2025
R-4.5-winNOTEJan 13 2025
R-4.5-linuxNOTEJan 13 2025
R-4.4-winNOTEJan 13 2025
R-4.4-macNOTEJan 13 2025
R-4.3-winOKJan 13 2025
R-4.3-macOKJan 13 2025

Exports:adaptive_nested_quadratureaghqcompute_momentcompute_pdf_and_cdfcompute_quantilesdefault_controldefault_control_marglaplacedefault_control_tmbdefault_transformationget_hessianget_log_normconstget_modeget_nodesandweightsget_numquadpointsget_opt_resultsget_param_dimget_quadtableget_shiftinterpolate_marginal_posteriorlaplace_approximationmake_moment_functionmake_numeric_moment_functionmake_transformationmarginal_laplacemarginal_laplace_tmbmarginal_posteriornested_quadraturenormalize_logpostoptimize_thetasample_marginalvalidate_controlvalidate_momentvalidate_transformation

Dependencies:data.tablelatticeMatrixmvQuadnumDerivpolynomrlangstatmod

TMBstan example

Rendered fromtmbstan.Rnwusingutils::Sweaveon Jan 13 2025.

Last update: 2024-02-28
Started: 2024-02-28

Readme and manuals

Help Manual

Help pageTopics
Adaptive Gauss-Hermite Quadratureaghq
Compute momentscompute_moment compute_moment.aghq compute_moment.default compute_moment.list
Density and Cumulative Distribution Functioncompute_pdf_and_cdf compute_pdf_and_cdf.aghq compute_pdf_and_cdf.default compute_pdf_and_cdf.list
Quantilescompute_quantiles compute_quantiles.aghq compute_quantiles.default compute_quantiles.list
Correct the posterior marginals of a fitted aghq objectcorrect_marginals
Default control arguments for 'aghq::aghq()'.default_control
Default control arguments for 'aghq::marginal_laplace()'.default_control_marglaplace
Default control arguments for 'aghq::marginal_laplace_tmb()'.default_control_tmb
Default transformationdefault_transformation
Globular Clusters data for Milky Way mass estimationgcdata
Transformed Globular Clusters datagcdatalist
Obtain the Hessian from an aghq objectget_hessian
Obtain the log-normalizing constant from a fitted quadrature objectget_log_normconst get_log_normconst.aghq get_log_normconst.default get_log_normconst.laplace get_log_normconst.marginallaplace get_log_normconst.numeric
Obtain the mode from an aghq objectget_mode
Obtain the nodes and weights table from a fitted quadrature objectget_nodesandweights get_nodesandweights.aghq get_nodesandweights.data.frame get_nodesandweights.default get_nodesandweights.laplace get_nodesandweights.list get_nodesandweights.marginallaplace
Obtain the number of quadrature nodes used from an aghq objectget_numquadpoints
Obtain the optimization results from an aghq objectget_opt_results get_opt_results.aghq get_opt_results.marginallaplace
Obtain the parameter dimension from an aghq objectget_param_dim get_param_dim.aghq
Interpolate the Marginal Posteriorinterpolate_marginal_posterior
Laplace Approximationlaplace_approximation
Moments of Positive Functionsmake_moment_function make_moment_function.aghqmoment make_moment_function.aghqtrans make_moment_function.character make_moment_function.default make_moment_function.function make_moment_function.list
Compute numeric momentsget_shift make_numeric_moment_function
Marginal Parameter Transformationsmake_transformation make_transformation.aghqtrans make_transformation.default make_transformation.list
Marginal Laplace approximationmarginal_laplace
AGHQ-normalized marginal Laplace approximation from a TMB function templatemarginal_laplace_tmb
Marginal Posteriorsmarginal_posterior marginal_posterior.aghq marginal_posterior.list
Nested, sparse Gaussian quadrature in AGHQadaptive_nested_quadrature get_quadtable nested_quadrature
Normalize the joint posterior using AGHQnormalize_logpost
Obtain function information necessary for performing quadratureoptimize_theta
Plot method for AGHQ objectsplot.aghq
Print method for AGHQ objectsprint.aghq
Print method for AGHQ summary objectsprint.aghqsummary
Print method for AGHQ objectsprint.laplace
Print method for laplacesummary objectsprint.laplacesummary
Summary statistics for models using marginal Laplace approximationsprint.marginallaplacesummary
Exact independent samples from an approximate posterior distributionsample_marginal sample_marginal.aghq sample_marginal.marginallaplace
Summary statistics computed using AGHQsummary.aghq
Summary method for Laplace Approximation objectssummary.laplace
Summary statistics for models using marginal Laplace approximationssummary.marginallaplace
Validate a control listvalidate_control
Validate a moment function objectvalidate_moment validate_moment.aghqmoment validate_moment.character validate_moment.default validate_moment.function validate_moment.list
Validate a transformation objectvalidate_transformation validate_transformation.aghqtrans validate_transformation.default validate_transformation.list